勾股定理小结.ppt
《勾股定理小结.ppt》由会员分享,可在线阅读,更多相关《勾股定理小结.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十七章第十七章 勾股定理勾股定理Zxxk一创设复习情境同学们,请认真观察这四张图片中都有一种我们学过的几何图形,它是哪种图形?1.1.如图,如图,已知在已知在ABC 中,中,B =90,一直角边为一直角边为a,斜边为斜边为b,则另一直角边,则另一直角边c满足满足c2 = .【思考思考】为什么不是为什么不是 ?222bac第一组练习: 勾股定理的直接应用(一)知两边或一边一角型 二. 基础知识运用答案:因为B 所对的边是斜边.答案:222abc 2.在RtABC中,C=90. .(1)如果a=3,b=4, 则c= ; (2)如果a=6,c=10, 则b=;(3)如果c=13,b=12,则a=
2、; (4)已知b=3,A=30,求a,c.答案:(4)a= ,c= .585第一组练习: 勾股定理的直接应用(一)知两边或一边一角型32 31.如图,已知在ABC 中,B =90,若BC4 , ABx ,AC=8- -x,则AB= , ,AC= .2.在RtABC C 中中, ,B=90,b=34, ,a:c=8:15, ,则a= , , c= .3.(选做题)在RtABC中,C=90,若a=12, ,c- -b=8, ,求b,c. 答案:答案:3. 3. b=5=5,c=13.=13.351630第一组练习: 勾股定理的直接应用(二)知一边及另两边关系型 1. 对三角形边的分类. 已知一个直
3、角三角形的两条边长是3 cm和4 cm,求第三条边的长注意:这里并没有指明已知的两条边就是直角边,所以4 cm可以是直角边,也可以是斜边,即应分情况讨论答案:5 cm或 cm.第一组练习: 勾股定理的直接应用(三)分类讨论的题型7已知:在已知:在ABC中,中,AB15 15 cm,AC13 13 cm,高,高AD12 12 cm,求求SABC答案:答案:第第1 1种情况:如图种情况:如图1 1,在,在RtADB和和RtADC中,分别由勾股中,分别由勾股定理,得定理,得BD9 9,CD5 5,所以,所以BCBD+ + CD9+59+51414故故SABC8484(cmcm2 2)第第2 2种情况
4、,如图种情况,如图2 2,可得:,可得:SABC=24=24( cm cm2 2 ) 2. 2. 对三角形高的分类对三角形高的分类. . Zxxk图图1图图2第一组练习: 勾股定理的直接应用(三)分类讨论的题型【思考思考】本组题,利用勾股定理解决了本组题,利用勾股定理解决了哪些类型题目?注意事项是什么?哪些类型题目?注意事项是什么? 利用勾股定理能求三角形的边长和高等利用勾股定理能求三角形的边长和高等线段的长度线段的长度. .注意没有图形的题目,先画注意没有图形的题目,先画图,再考虑是否需分类讨论图,再考虑是否需分类讨论. .1. 在一块平地上,张大爷家屋前9米远处有一棵大树在一次强风中,这棵
5、大树从离地面6米处折断倒下,量得倒下部分的长是10米出门在外的张大爷担心自己的房子被倒下的大树砸到大树倒下时能砸到张大爷的房子吗?()A一定不会B可能会C一定会D以上答案都不对A第二组练习: 用勾股定理解决简单的实际问题2. 如图,滑杆在机械槽内运动,如图,滑杆在机械槽内运动,ACB为直角,已知滑为直角,已知滑杆杆AB长长2.5米,顶端米,顶端A在在AC上运动,量得滑杆下端上运动,量得滑杆下端B距距C点的距离为点的距离为1.5米,当端点米,当端点B向右移动向右移动0.5米时,求滑杆顶米时,求滑杆顶端端A下滑多少米?下滑多少米?AECBD答案:答案:解:设解:设AE的长为的长为x 米,依题意米,
6、依题意得得CE=AC - x ,AB=DE=2.5,=2.5,BC=1.5,=1.5,C=90=90,AC=2.=2.BD=0.5,=0.5,AC=2.=2.在在RtECD中,中,CE=1.5.=1.5.2- 2- x =1.5 =1.5, x =0.5. =0.5. 即即AE=0.5 . =0.5 . 答:梯子下滑答:梯子下滑0.50.5米米第二组练习: 用勾股定理解决简单的实际问题答案:答案:是是证明:在证明:在RtACB中,中,BC=3=3,AB=5=5,AC=4=4DC=4-1=3=4-1=3在在RtECD中,中,DC=3=3,DE=5=5,CE=4=4BE= =CE- -CB=1=1
7、即梯子底端也滑动了即梯子底端也滑动了1 1米米3.3.(选做题)一架长(选做题)一架长5 5米的梯子,斜立在一竖直的墙上,米的梯子,斜立在一竖直的墙上,这时梯子底端距墙底这时梯子底端距墙底3 3米米 如果梯子的顶端沿墙下滑如果梯子的顶端沿墙下滑1 1米,梯子的底端在水平方向沿一条直线也将滑动米,梯子的底端在水平方向沿一条直线也将滑动1 1米吗?米吗?用所学知识,论证你的结论用所学知识,论证你的结论第二组练习: 用勾股定理解决简单的实际问题思考:思考:利用勾股定理解题决实际问题时,基利用勾股定理解题决实际问题时,基本步骤是什么?本步骤是什么?Zxxk答案:答案:1.1.把实际问题转化成数学问题,
8、找出相把实际问题转化成数学问题,找出相应的直角三角形应的直角三角形.2.2.在直角三角形中找出直角边,斜边在直角三角形中找出直角边,斜边. .3.3.根据已知和所求,利用勾股定理解决问题根据已知和所求,利用勾股定理解决问题. .1证明线段相等.已知:如图,AD是ABC的高,AB=10,AD=8,BC=12 . .求证: ABC是等腰三角形. 答案:答案:证明:证明:AD是是ABC的高,的高,ADB=ADC=90.在在RtADB中,中,AB=10,AD=8,BD=6 .BC=12, DC=6.在在RtADC中,中,AD=8,AC=10,AB=AC.即即ABC是等腰三角形是等腰三角形. 分析:分析
9、:利用勾股定理求出线段利用勾股定理求出线段BD的长,也能求出线段的长,也能求出线段AC的长,最后得出的长,最后得出AB=AC,即可,即可.第三组练习: 会用勾股定理解决较综合的问题2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.【思考思考1】由由AB=8,BC=10,你可以知道哪些线段长?你可以知道哪些线段长?请在图中标出来请在图中标出来.答案:答案:AD=10,DC=8 .第三组练习: 会用勾股定理解决较综合的问题2 2解决折叠的问
10、题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.第三组练习: 会用勾股定理解决较综合的问题【思考思考2】 在在RtDFC中,你可以求出中,你可以求出DF的长吗?请的长吗?请在图中标出来在图中标出来.答案:答案: DF=6 .2 2解决折叠的问题解决折叠的问题. .已知如图,将长方形的一边已知如图,将长方形的一边BC沿沿CE折叠,折叠,使得点使得点B落在落在AD边的点边的点F处,已知处,已知AB=8,BC=10, 求求BE的长的长.第三组练习: 会用勾股
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 小结
限制150内