最新大地测量学大地测量坐标系统的转换教学课件.ppt
《最新大地测量学大地测量坐标系统的转换教学课件.ppt》由会员分享,可在线阅读,更多相关《最新大地测量学大地测量坐标系统的转换教学课件.ppt(89页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、大地测量学大地测量坐标系大地测量学大地测量坐标系统的转换统的转换第七章第七章 大地测量坐标系统的转换大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重点)大地坐标与三维直角坐标的换算关系(重点)第三节第三节 不同大地坐标系统之间的转换(重点)不同大地坐标系统之间的转换(重点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点)局部坐标系统的选择与坐标转换(重点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节
2、GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题 应用大地测量学应用大地测量学u克拉索夫斯基椭球克拉索夫斯基椭球比现代精确椭球相差过大比现代精确椭球相差过大;u只涉及两个几何性质的椭球参数只涉及两个几何性质的椭球参数(a a和和),满足不了当今理论研究和实),满足不了当今理论研究和实际工作中所需四个地球椭球基本参数的要求;际工作中所需四个地球椭球基本参数的要求;u处理处理重力数据重力数据时采用的是赫尔默特时采用的是赫尔默特19011901到到19091909年正常重力公式,与之相应年正常重力公式,与之相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的;的
3、赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的;u对应的对应的参考椭球面与我国大地水准面存在着自西向东明显的系统性倾斜参考椭球面与我国大地水准面存在着自西向东明显的系统性倾斜,在东部地区高程异常最大达到在东部地区高程异常最大达到6565米,全国范围平均米,全国范围平均2929米;米;u椭球定向不明确椭球定向不明确,椭球短轴指向既不是,椭球短轴指向既不是CIO,CIO,也不是我国的也不是我国的JYD1968.0JYD1968.0;u起始子午面起始子午面不是国际时间局不是国际时间局BIHBIH所定义的格林尼治平均天文台子午面,给所定义的格林尼治平均天文台子午面,给坐标换算带来一些不便和误
4、差;坐标换算带来一些不便和误差;u坐标系未经整体平差坐标系未经整体平差而仅是局部平差成果,点位精度不高,也不均匀;而仅是局部平差成果,点位精度不高,也不均匀;u名不副实名不副实,容易引起一些误解。,容易引起一些误解。 7.1.1 1954年北京坐标系年北京坐标系 应用大地测量学应用大地测量学7.1.1 1954年北京坐标系年北京坐标系 应用大地测量学应用大地测量学7.1.1 1954年北京坐标系年北京坐标系7.1.2 1980年国家大地坐标系年国家大地坐标系7.1.3 1954年北京坐标系(整体平差转换值)年北京坐标系(整体平差转换值)7.1 我国的大地坐标系统简介我国的大地坐标系统简介7.1
5、.2 1980年国家大地坐标系年国家大地坐标系 应用大地测量学应用大地测量学u19801980年国家大地坐标系属年国家大地坐标系属参心参心大地坐标系;大地坐标系;u采用既含几何参数又含物理参数的采用既含几何参数又含物理参数的四个椭球基本参数四个椭球基本参数。数值采用。数值采用19751975年年IUGGIUGG第第1616届大会的推荐值;届大会的推荐值;u多点多点定位;定位;u定向定向明确。地球椭球短轴平行于由地球质心指向地极原点明确。地球椭球短轴平行于由地球质心指向地极原点JYD1968.0JYD1968.0方向,起始大地子午面平行于我国起始天文子午面;方向,起始大地子午面平行于我国起始天文
6、子午面;u大地原点大地原点在我国中部:陕西省泾阳县永乐镇,简称西安原点;在我国中部:陕西省泾阳县永乐镇,简称西安原点;u大地点高程大地点高程以以19561956年青岛验潮站求出的黄海平均海水面为基准;年青岛验潮站求出的黄海平均海水面为基准;u19801980年国家大地坐标系建立后,进行了全国天文大地网年国家大地坐标系建立后,进行了全国天文大地网整体平差整体平差,计算了计算了5 5万余个点的成果。万余个点的成果。 应用大地测量学应用大地测量学7.1.2 1980年国家大地坐标系年国家大地坐标系7.1.2 1980年国家大地坐标系年国家大地坐标系 应用大地测量学应用大地测量学u原来的各种关于椭球参
7、数的用表均要变更原来的各种关于椭球参数的用表均要变更u低等点要重新平差,编撰新的三角点成果表低等点要重新平差,编撰新的三角点成果表u地形图图廓线和方里网线位置发生变化,并引起地形图内地形、地地形图图廓线和方里网线位置发生变化,并引起地形图内地形、地物相关位置的改变物相关位置的改变u新形势下新形势下19801980年国家大地坐标系的地极原点年国家大地坐标系的地极原点JYD1968.0JYD1968.0已不能适应已不能适应当代建立高精度天文地球动力学系带要求。当代建立高精度天文地球动力学系带要求。 应用大地测量学应用大地测量学7.1.1 1954年北京坐标系年北京坐标系7.1.2 1980年国家大
8、地坐标系年国家大地坐标系7.1.3 1954年北京坐标系(整体平差转换值)年北京坐标系(整体平差转换值)7.1 我国的大地坐标系统简介我国的大地坐标系统简介7.1.3 1954年北京坐标系(整体平差转换值年北京坐标系(整体平差转换值) 应用大地测量学应用大地测量学 它是在它是在19801980年国家大地坐标系的基础上,年国家大地坐标系的基础上,改变改变IUGG1975IUGG1975年椭球至克拉索夫斯基椭球年椭球至克拉索夫斯基椭球,通过在空间,通过在空间三个坐标轴上进行平移而来的。因此,其坐标值仍三个坐标轴上进行平移而来的。因此,其坐标值仍体现了体现了整体平差整体平差的特点,精度和的特点,精度
9、和19801980年国家大地坐年国家大地坐标系相同,克服了标系相同,克服了19541954年北京坐标系局部平差的缺年北京坐标系局部平差的缺点;其点;其坐标轴坐标轴和和19801980年国家大地坐标系坐标轴相互年国家大地坐标系坐标轴相互平行,所以它的定向明确;它的平行,所以它的定向明确;它的椭球参数椭球参数恢复为恢复为19541954年北京坐标系的椭球参数,从而使其坐标值和年北京坐标系的椭球参数,从而使其坐标值和19541954年北京坐标系局部平差坐标值相差较小。年北京坐标系局部平差坐标值相差较小。 应用大地测量学应用大地测量学u属属参心参心大地坐标系;长短轴采用大地坐标系;长短轴采用克拉索夫斯
10、基克拉索夫斯基椭球参数;椭球参数;u多点多点定位,参心虽和定位,参心虽和19541954年北京坐标系参心不相一致,但十分年北京坐标系参心不相一致,但十分接近;接近;u定向定向明确,与明确,与19801980年国家大地坐标系的定向相同;年国家大地坐标系的定向相同;u大地原点大地原点与与19801980年国家大地坐标系相同,但大地年国家大地坐标系相同,但大地起算数据起算数据不同;不同;u大地点高程基准大地点高程基准是以是以19561956年青岛验潮站求出的黄海平均海水面年青岛验潮站求出的黄海平均海水面为基准;为基准;u提供坐标是提供坐标是19801980年国家大地坐标系年国家大地坐标系整体平差整体
11、平差转换值,精度一致;转换值,精度一致;u用于用于测图坐标系测图坐标系,对于,对于1:51:5万以下比例尺测图,新旧图接边,不万以下比例尺测图,新旧图接边,不会产生明显裂痕。会产生明显裂痕。 7.1.3 1954年北京坐标系(整体平差转换值年北京坐标系(整体平差转换值) 应用大地测量学应用大地测量学三个坐标系的关系如下图三个坐标系的关系如下图:7.1.3 1954年北京坐标系(整体平差转换值年北京坐标系(整体平差转换值)第七章第七章 大地测量坐标系统的转换大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重点)大地坐
12、标与三维直角坐标的换算关系(重点)第三节第三节 不同大地坐标系统之间的转换(重点)不同大地坐标系统之间的转换(重点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点)局部坐标系统的选择与坐标转换(重点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与三维直角坐标的换算关系 应用大地测量学应用大地测量学第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与
13、三维直角坐标的换算关系 应用大地测量学应用大地测量学BHeNZLBHNYLBHNXsin)1 (sincos)(coscos)(2第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与三维直角坐标的换算关系 应用大地测量学应用大地测量学NBYXHHNNeYXZBXYLcos)(1(arctanarctan221222第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与三维直角坐标的换算关系 应用大地测量学应用大地测量学)57()/(1)(/arctan()sin()/arctan(122220222HNNeYXZBNBNeZYXHXYL第七章第七章 大地测量坐标系统的转换大地测量坐标系统
14、的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重点)大地坐标与三维直角坐标的换算关系(重点)第三节第三节 不同大地坐标系统之间的转换(重点)不同大地坐标系统之间的转换(重点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点)局部坐标系统的选择与坐标转换(重点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第三节第三节 不同大地坐标系统之间的转换
15、不同大地坐标系统之间的转换 应用大地测量学应用大地测量学 应用大地测量学应用大地测量学7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换7.3.3 其他转换方法其他转换方法7.3 不同大地坐标系统之间的转换不同大地坐标系统之间的转换 应用大地测量学应用大地测量学7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换7.3.3 其他转换方法其他转换方法7.3 不同大地坐标系统之间的转换不同大地坐标系统之间的转换7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换 应用大
16、地测量学应用大地测量学 不同空间直角坐标系的转换,包括三个坐标轴的不同空间直角坐标系的转换,包括三个坐标轴的平移平移和坐标和坐标轴的轴的旋转旋转,以及两个坐标系的,以及两个坐标系的尺度比尺度比参数,坐标轴之间的三个旋参数,坐标轴之间的三个旋转角叫欧勒角。转角叫欧勒角。 空间直角坐标转换公式:(空间直角坐标转换公式:(7-7)、()、(7-8) 应用大地测量学应用大地测量学 三参数坐标转换公式是在假设两坐标系间三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行各坐标轴相互平行,轴系间轴系间不存在欧勒角不存在欧勒角的条件下得出的。实际应用中,因为欧勒角的条件下得出的。实际应用中,因为欧勒角不大,
17、可以用三参数公式近似地进行空间直角坐标系统的转换。不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时公共点只有一个时, ,采用三参数公式进行转换。采用三参数公式进行转换。(7-97-9) 000111222ZYXZYXZYX7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换 应用大地测量学应用大地测量学 用七参数进行空间直角坐标转换有用七参数进行空间直角坐标转换有布尔莎公式布尔莎公式,莫洛琴斯基公莫洛琴斯基公式式和和范氏公式范氏公式等。下面给出布尔莎七参数公式:等。下面给出布尔莎七参数公式:(7-10)000111111222000)1 (ZYXZYXZYXmZ
18、YXXYXZYZ7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换 应用大地测量学应用大地测量学 坐标转换七参数公式属于坐标转换七参数公式属于相似变换模型相似变换模型。大地控制网中的系。大地控制网中的系统误差一般呈区域性,当统误差一般呈区域性,当区域较小区域较小时,区域性的系统误差被相似时,区域性的系统误差被相似变换参数变换参数拟合拟合,故局部区域的坐标转换采用七参数公式模型是比,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对较适宜的。但对全国或一个省区范围全国或一个省区范围内的坐标转换,可以采用内的坐标转换,可以采用多多项式回归模型项式回归模型,将各区域的系统偏差拟合到回
19、归参数中,从而提,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。高坐标转换精度。 两种不同空间直角坐标系转换时,两种不同空间直角坐标系转换时,坐标转换的精度坐标转换的精度取决于坐取决于坐标转换的标转换的数学模型数学模型和求解转换系数的和求解转换系数的公共点坐标精度公共点坐标精度,此外,还,此外,还与与公共点的分布公共点的分布有关。鉴于地面控制网系统误差在不同区域并非有关。鉴于地面控制网系统误差在不同区域并非是一个常数,所以采用是一个常数,所以采用能更好地反映实际情况,能更好地反映实际情况,提高坐标转换的精度。提高坐标转换的精度。 7.3.1 不同空间直角坐标系的转换不同空间直角坐标
20、系的转换 应用大地测量学应用大地测量学7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换7.3.3 其他转换方法其他转换方法7.3 不同大地坐标系统之间的转换不同大地坐标系统之间的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换 应用大地测量学应用大地测量学 不同大地坐标系的转换是指不同大地坐标系的转换是指的两个大地的两个大地坐标系统之间的坐标转换坐标系统之间的坐标转换。空间一点。空间一点P P对于第一个参考椭球其大地对于第一个参考椭球其大地坐标为(坐标为(B1B1,L1L1,H1H1),当椭球元素及其定位变化后,),当椭球
21、元素及其定位变化后,P P点的大地点的大地坐标变化了(坐标变化了(dB,dL,dHdB,dL,dH),对于变化后的第二个参考椭球),对于变化后的第二个参考椭球P P点的大点的大地坐标为(地坐标为(B2B2,L2L2,H2H2)。显然,不同大地坐标系的转换公式为)。显然,不同大地坐标系的转换公式为 只要求出大地坐标的只要求出大地坐标的变化量变化量,就可以按上式进行不同大地坐标,就可以按上式进行不同大地坐标系的转换。系的转换。根据椭球元素和定位的变化推求点的大地经纬度和大地根据椭球元素和定位的变化推求点的大地经纬度和大地高的变化的公式高的变化的公式,叫做,叫做。 dHHHdLLLdBBB12121
22、2 应用大地测量学应用大地测量学 由第二节空间直角坐标和大地坐标的关系式(由第二节空间直角坐标和大地坐标的关系式(7-17-1)可知,点)可知,点的空间大地直角坐标是椭球几何元素(的空间大地直角坐标是椭球几何元素(长半径长半径a a和和扁率扁率f f)和椭球定)和椭球定位元素(位元素(B B,L L,H H)的函数。当椭球元素和定位结果发生变化时,)的函数。当椭球元素和定位结果发生变化时,点的空间大地直角坐标必然发生变化。点的空间大地直角坐标必然发生变化。 dHHZdLLZdBBZdffZdaaZdZdHHYdLLYdBBYdffYdaaYdYdHHXdLLXdBBXdffXdaaXdX7.3
23、.2 不同大地坐标系的转换不同大地坐标系的转换 应用大地测量学应用大地测量学:(:(7-167-16) fdfBBeMadaBeNBdZLdYBLdXBdH1sin)sin1()sin1(sinsincoscoscos222221cossin)sin2(sincoscossinsincossin1222fdfBBBeMadaBBNeBdZLdYBLdXBHMdB)cossecsinsec(1LdYBLdXBHNdL7.3.2 不同大地坐标系的转换不同大地坐标系的转换 应用大地测量学应用大地测量学fdfBBeMadaBeNmBeNLBBNeLBBNeBZLYBLXBdHYX1sin)sin1 (
24、)sin1 ()sin1 (coscossinsincossinsinsincoscoscos2222222220001cossin)sin2(sincos1cossincossin)cossinsincossin(12222000fdfBBBeMadaBBNeHMBmBeMNLLBZLYBLXBHMdBYXzYXLBLBLYBLXBHNdLsintancostan)cossecsinsec(1007.3.2 不同大地坐标系的转换不同大地坐标系的转换 应用大地测量学应用大地测量学(X1,Y1,Z1X1,Y1,Z1)(B1,L1,H1B1,L1,H1)(X2,Y2,Z2X2,Y2,Z2)(B2,
25、L2,H2B2,L2,H2)BrusaBrusa七参数公式七参数公式椭球椭球1 1参数参数椭球椭球2 2参数参数7.3.2 不同大地坐标系的转换不同大地坐标系的转换 应用大地测量学应用大地测量学 1cossin)sin2(sincos1cossincossin)cossinsincossin(12222000fdfBBBeMadaBBNeMBmBeMNLLBZLYBLXBMdBYXzYXLBLBLYBLXBNdLsintancostan)cossecsinsec(100只要在大地坐标微分公式中,将只要在大地坐标微分公式中,将H=0H=0代入即得到二维大地坐标代入即得到二维大地坐标转换模型转换模
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 大地 测量学 大地测量 坐标 系统 转换 教学 课件
限制150内