最新反常积分的判敛法精品课件.ppt
《最新反常积分的判敛法精品课件.ppt》由会员分享,可在线阅读,更多相关《最新反常积分的判敛法精品课件.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复复习习: 1 1反常积分反常积分 无无界界函函数数的的反反常常积积分分无无穷穷限限的的反反常常积积分分 2 2P 积分积分)0( axdxap 时收敛时收敛当当 1 p;时发散时发散当当 1 p。 3 3. . q积积分分 baqaxdx )(及及)()( baxbdxbaq 时时收收敛敛当当 1 q;时时发发散散当当 1 q。 设设) ,)(),(baCxgxf , bx 为为无无穷穷型型间间断断点点, 且且), bax 时时,)()(0 xgxf , 则则(1 1)当当 badxxg )(收收敛敛时时, badxxf )(也也收收敛敛; (2 2)当当 badxxf )(发发散散时时,
2、badxxg )(也也发发散散。 3.2 3.2 无界函数反常积分的判敛法无界函数反常积分的判敛法 若若ax 为无穷型间断点,相应的极限式为为无穷型间断点,相应的极限式为 lxfaxqax )()(lim。 设设) ,)(baCxf ,0)( xf ,bx 为为无无穷穷型型间间断断点点, 且且lxfxbqbx )()(lim,则则 (1 1)当当1 q, l0时时, badxxf )(收收敛敛; (2 2)当当1 q, l0时时, badxxf )(发发散散。 例例 4 4判判别别下下列列反反常常积积分分的的敛敛散散性性: (1 1)椭椭圆圆积积分分)( )1( )1)(1(2 1 0 222
3、 kxkxdx )1)(1(1)1(lim222211xkxxx ,)1(21)1)(1(1lim2221kxkxx )1)(1( 1 0 222 xkxdx收收敛敛。 解解:1 x是是瑕瑕点点。 )1(21 ,21(2klq (2 2)dxx sin1 0 解解:0 x和和 x是是瑕瑕点点,为为此此讨讨论论下下面面两两个个反反常常积积分分 dxxI sin1 2 10 和和dxxI sin1 22 的的敛敛散散性性 1sinlimsin1lim0210 xxxxxx, )1 ,21( lq1I收收 敛敛 。 1)sin(limsin1)(lim21 xxxxxx, )1 ,21( lq2I收
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 反常 积分 判敛法 精品 课件
限制150内