《最新同济大学第五版高等数学(下)课件D111常数项级数PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新同济大学第五版高等数学(下)课件D111常数项级数PPT课件.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、同济大学第五版高等数学同济大学第五版高等数学( (下下) )课件课件D111D111常数项级数常数项级数常数项级数的概念和性质 一、常数项级数的概念一、常数项级数的概念 二、无穷级数的基本性质二、无穷级数的基本性质 三、级数收敛的必要条件三、级数收敛的必要条件 *四、柯西审敛原理四、柯西审敛原理 机动 目录 上页 下页 返回 结束 第一节 第十一章 例例2. 判别下列级数的敛散性: .) 1(1)2( ;1ln) 1 (11nnnnnn解解: (1) 12lnnSnnln) 1ln()2ln3(ln) 1ln2(ln) 1ln( n)n(所以级数 (1) 发散 ;技巧技巧:利用 “拆项相消拆项
2、相消” 求和23ln34lnnn1ln机动 目录 上页 下页 返回 结束 (2) ) 1(1431321211nnSn211111n)n(1所以级数 (2) 收敛, 其和为 1 .31214131111nn技巧技巧:利用 “拆项相消拆项相消” 求和机动 目录 上页 下页 返回 结束 例例3. 判别级数2211lnnn的敛散性 .解解:211lnn221lnnn nnnln2) 1ln() 1ln(2211lnkSnkn2ln21ln3ln3ln22ln4lnln2) 1ln() 1ln(nnn5ln4ln23ln 2lnnnln) 1ln(2ln)1ln(1n, 2lnlimnnS故原级数收敛
3、 , 其和为.2ln机动 目录 上页 下页 返回 结束 二、无穷级数的基本性质二、无穷级数的基本性质 性质性质1. 若级数1nnu收敛于 S ,1nnuS则各项乘以常数 c 所得级数1nnuc也收敛 ,证证: 令,1nkknuS则nkknuc1,nScnnlimSc这说明1nnuc收敛 , 其和为 c S . nnSclim说明说明: 级数各项乘以非零常数后其敛散性不变 .即其和为 c S .机动 目录 上页 下页 返回 结束 性质性质2. 设有两个收敛级数,1nnuS1nnv则级数)(1nnnvu 也收敛, 其和为.S证证: 令,1nkknuS,1nkknv则)(1knkknvu nnS)(
4、nS这说明级数)(1nnnvu 也收敛, 其和为.S机动 目录 上页 下页 返回 结束 说明说明:(2) 若两级数中一个收敛一个发散 , 则)(1nnnvu 必发散 . 但若二级数都发散 ,)(1nnnvu 不一定发散.例如例如, ,) 1(2nnu取,) 1(12 nnv0nnvu而(1) 性质2 表明收敛级数可逐项相加或减 .(用反证法可证)机动 目录 上页 下页 返回 结束 性质性质3. 在级数前面加上或去掉有限项有限项, 不会影响级数的敛散性.证证: 将级数1nnu的前 k 项去掉,1nnku的部分和为nllknu1knkSSnknS与,时由于n数敛散性相同. 当级数收敛时, 其和的关
5、系为.kSS 类似可证前面加上有限项的情况 .极限状况相同, 故新旧两级所得新级数机动 目录 上页 下页 返回 结束 性质性质4. 收敛级数加括弧后所成的级数仍收敛于原级数的和.证证: 设收敛级数,1nnuS若按某一规律加括弧,)()(54321uuuuu则新级数的部分和序列 ), 2 , 1(mm为原级数部分和序列 ),2,1(nSn的一个子序列,nnmmS limlimS推论推论: 若加括弧后的级数发散, 则原级数必发散.注意注意: 收敛级数去括弧后所成的级数不一定收敛.,0) 11 () 11 (但1111发散.因此必有例如,用反证法可证用反证法可证例如机动 目录 上页 下页 返回 结束
6、 例例4.判断级数的敛散性:141141131131121121解解: 考虑加括号后的级数)()()(1411411311311211211111nnan12nnna2发散 ,从而原级数发散 .nn121机动 目录 上页 下页 返回 结束 三、级数收敛的必要条件三、级数收敛的必要条件 设收敛级数,1nnuS则必有.0limnnu证证: 1nnnSSu1limlimlimnnnnnnSSu0SS可见: 若级数的一般项不趋于若级数的一般项不趋于0 , 则级数必发散则级数必发散 .例如例如,1) 1(544332211nnn其一般项为1) 1(1nnunn不趋于0,因此这个级数发散.nun,时当机动
7、 目录 上页 下页 返回 结束 注意注意:0limnnu并非级数收敛的充分条件.例如例如, 调和级数nnn13121111虽然,01limlimnunnn但此级数发散 .事实上事实上 , 假设调和级数收敛于 S , 则0)(lim2nnnSSnn2nnnn21312111但nnSS2矛盾! 所以假设不真 .21机动 目录 上页 下页 返回 结束 例例5. 判断下列级数的敛散性, 若收敛求其和:;!) 1 (1nnnnne解解: (1) 令;231)2(123nnnn.212)3(1nnn,!nnnnneu 则nnuu1nne)1 (1),2, 1(1n故euuunn11从而,0limnnu这说
8、明级数(1) 发散.111)1 ()1 (nnnne11) 1(! ) 1(nnnnennnne!机动 目录 上页 下页 返回 结束 123231)2(nnnn因nnn23123)2)(1()2(21nnnnn)2)(1(1) 1(121nnnn),2, 1(nnknkkkS123231nkkkkk1)2)(1(1) 1(121进行拆项相消进行拆项相消,41limnnS这说明原级数收敛 ,.41)2)(1(1nnn其和为)2)(1(121121nn(2) 机动 目录 上页 下页 返回 结束 1212)3(nnn32252321nSnn212 nnSS211432212252321nn21212
9、21132121n1212nn21212111211n1212nn121121n1212nn,2122132nnnnSnn21225232132这说明原级数收敛, 其和为 3 ., 3limnnS故(3) 机动 目录 上页 下页 返回 结束 的充要条件是:*四、柯西审敛原理四、柯西审敛原理 定理定理.收敛级数1nnu, 0,ZNpnnnuuu21时,当Nn ,Zp对任意有证证: 设所给级数部分和数列为),2, 1(nSn因为npnpnnnSSuuu21所以, 利用数列 ),2, 1(nSn的柯西审敛原理(第一章第六节) 即得本定理的结论 .机动 目录 上页 下页 返回 结束 例例6. .112的敛散性nnpnnnuuu21解解: ,Zp对任意有利用柯西审敛原理判别级数 222)(1)2(1) 1(1pnnn)(1(1)2)(1(1) 1(1pnpnnnnn)111()2111()111(pnpnnnnnpnn11n1机动 目录 上页 下页 返回 结束 , 0,取1N当 nN 时,Zp对任意都有nuuupnnn121由柯西审敛原理可知, 级数 .112收敛nn作业作业 P192 1(1), (3) ; 2(2), (3), (4); 3(2); 4(1), (3), (5); *5(3), (4)第二节 目录 上页 下页 返回 结束 26 结束语结束语
限制150内