最新医学图像分割PPT课件.ppt
《最新医学图像分割PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新医学图像分割PPT课件.ppt(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、讨论内容图像分割概述阈值分割医学图像特点:模糊、不均匀、个体差异、复杂多样灰度不均匀: 不均匀的组织器官、磁场等伪影和噪声: 成像设备局限性、组织的蠕动边缘模糊 : 局部体效应边缘不明确: 病变组织1、图像分割概述局部体效应 (partial volume effects)1、图像分割概述Ideal ImageAcquired Image医学图像分割方法的公共特点:分割算法面向具体的分割任务,没有通用的方法更加重视多种分割算法的有效结合需要利用医学中的大量领域知识交互式分割方法受到日益重视 医学图像分割是一项十分困难的任务,至今仍然没有获得圆满的解决。1、图像分割概述2、阈值分割阈值分割是最常
2、见的一种分割方法。它基于对灰度图像的一种假设:目标或背景内的相邻象素间的灰度值是相似的,但不同目标或背景的象素在灰度上有差异,反映在图像的直方图上,不同目标和背景则对应不同的峰。选取的阈值应位于两个峰之间的谷,从而将各个峰分开CTCT图像图像中皮肤中皮肤骨骼的骨骼的分割分割2、阈值分割阈值分割的三种技术方案直接门限法间接门限法 对图像进行预处理后再运用门限法。 拉氏或梯度运算,邻域平均多门限法2、阈值分割多门限法2、阈值分割乳腺钼靶图像乳腺钼靶图像单门限分割单门限分割多门限分割多门限分割 门限的确定方法 根据直方图确定门限最小误判概率准则下的最佳门限最大类间距准则下的最佳门限最大类间类内距离比
3、准则下的最佳门限最大熵准则下的最佳门限根据二维直方图确定图像分割门限边缘灰度作为分割门限分水岭方法2、阈值分割阈值分割的优点 简单,常作为预处理方法阈值分割的缺点不适用于多通道图像不适用于特征值相差不大的图像不适用于各物体灰度值有较大重叠的图像对噪声和灰度不均匀敏感2、阈值分割ThresholdingThe simplest and most efficient image segmentation method is thresholding.Thresholding is to segment the image into two regions according to the gray
4、 level of image pixels. If the gray level is higher than the given threshold T, the output at this pixel is set to 1, otherwise it is set to 0.Image ThresholdingOriginal image Segmented image (T=128, 145)Determination of ThresholdIn thresholding method, the most difficult is to determine a proper va
5、lue of the threshold.There are different types of the threshold:Global threshold (constant threshold)Adaptive thresholdDetermination of Global thresholdIf the object and background have different distributions, the value of the global threshold can be determined by calculating the histogram of the i
6、mage.The global threshold can also be determined interactively.The threshold can also be determined by optimization. Determination of the globalthreshold from histogramT=150The Otsu Algorithml If t is chosen as a threshold, and p(i) is the normalized histogram0001111( )( )( |, )( )( )( )( )( |, )( )
7、( )tiKi tp ip iP i Htw tp ip ip iP i H tw tp i -1010( )( )1, since ( )1Kiw tw tp i0K-1( )p iiN bits means K = 2NtThe Otsu Algorithm0001111( )( )( )( )( )( )tiKi tp itiw tp itiw t 2200001221111( )( )( )( )( )( )( )( )tiKi tp ititw tp ititw t meansvariances0011( )( )( )( )TOTALw ttw ttMeans and varian
8、ce for each class-10since ( )1Kip iThe Otsu AlgorithmlStatistical discrimination measure based on variance between classes:2argmax*( )0,1,.1BETWEENTttK2220011( )BETWEENTOTALTOTALtwwlRun through all possible values of t, and pick the one that maximizes the discrimination measure:Chosen Threshold The
9、Otsu AlgorithmFor each potential threshold T,1. Separate the pixels into two clusters according to the threshold.2. Find the mean of each cluster.3. Square the difference between the means.4. Calculate the object function of .5. Find the optimal threshold T* that maximizes the value of .2( )BETWEENt
10、2( )BETWEENtDetermination of Otsus thresholdAutomatic Threshold based on mean and standard deviationAutomatic threshold based on mean and standard deviation: where are the automatic threshold at the point (i,j), the mean and standard deviation of the neighbors of (i,j), i.e., a local window, k is th
11、e weight and can be a real number. ( , )( , )( , )T i jf i jki j( , ), ( , ), ( , )T i jf i ji jDetermination of threshold by maximum entropylWhat is an entropy?lEntropy is the measurement of the information content in a probability distributionlMaximum entropy segmentation is to select such a thres
12、hold that the entropies in both object and background areas have maximum distributions.10lgNiiiHpp obHHH根据二维直方图确定图像分割门限 灰度平均灰度直方图 平均灰度局部方差直方图 最大熵 灰度梯度直方图 采用聚类的方法,分三类 平均灰度局部方差直方图 最大熵Determination of threshold by 2-D HistogramlDefinition of 2D histogram: Suppose f(x,y) to be an image of NxN pixels. It
13、s gray level is from 0 to L-1. Segment the image by using the following equation: where lFor the 2D thresholding method, it considers the average gray level of the point (x,y) simultaneously as follows. 01( , )( , )( , )Tbf x yTfx ybf x yT010, ,1b T bLDetermination of threshold by 2-D HistogramlThe
14、average gray level at the point (x,y) of its nxn neighbors is: where lFor the 2D thresholding method, it considers the average gray level of the point (x,y) simultaneously, i.e., use (f(x,y),g(x,y) to represent an image and to segment the image with 2D vector threshold (S,T): 222221( , )(,)nnnnijg x
15、 yf xi yjn nNDetermination of threshold by 2-D Histogram where lFor one image, let rij to be the occurrence number of gray level i and the average gray level j, we can define the joint probability as: lP is called the 2D histogram of the image f(x,y) 0,1( , )& ( , )( , )( , )& ( , )S Tbf x ySg x yTf
16、x ybf x ySg x yT010, , ,1b S T bL,2iji jrPN0,1i jLDetermination of threshold by 2-D Histogram If the threshold vector is (S,T), the 2D histogram will be divided into 4 parts: In Part 0 and Part 1, i.e., the object or background, the gray level and the average is close, while in Part 2 and part 3, th
17、e difference between the gray level and the average is big, which is corresponding to the boundary points. nN2D histogram of imageDetermination of threshold by 2-D HistogramlThe maximum entropy for the 2D histogram is to determine a threshold vector (S,T) such that we can divide the image into objec
18、t (A) and background (B) with the probability of where 0,00,1,(1),0(1),1(1),(1): ,.,: ,.,111s tstststssLLstststPPPAPPPPPPBPPP,00ststi jijPPDetermination of threshold by 2-D HistogramlThe goal of segmentation is to let the entropies in the object and background areas as big as possible, lThe maximum
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 医学 图像 分割 PPT 课件
限制150内