《2.3.1-平面向量基本定理》公开课课件(共32张PPT).ppt
《《2.3.1-平面向量基本定理》公开课课件(共32张PPT).ppt》由会员分享,可在线阅读,更多相关《《2.3.1-平面向量基本定理》公开课课件(共32张PPT).ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、(0),.(a0,0b0a abbab 向量与 共线 当且仅当有唯一一个实数使若当时, 不唯一;当时, 不存在)一、课前准备::共共线线向向量量定定理理复习1:12122:,3?e eee 复习给定平面内任意两个向量我们能否作出向量2向量的合向量的合成成(思考:为什么限定 ?) 0a1223dee 1e2ed想一想?想一想?:二、新课导学 探究:探究:a与与,1e,2e的关系的关系1e2ea是这一平面内的任一向量是这一平面内的任一向量已知已知是同一平面内的两个是同一平面内的两个,1e,2e不共线向量,不共线向量,a如:如:1 122:2?ee 问题 在复习 中,请大家想一想,平面内的任一向量是
2、否都可以用形如的向量表示呢学生活动:学生活动:1e2eaO OM MN NC CONOMOCOBOA21即即2211eea1e1e2e向量的分解向量的分解AB知识点一知识点一 平面向量基本定理平面向量基本定理存在性存在性唯一性唯一性,1e1. 如果如果是同一平面内的两个是同一平面内的两个不共线不共线向量,向量,那么对于这一平面的任意向量那么对于这一平面的任意向量2e, a使使一对实数一对实数,2,12211eea有且只有有且只有把不共线的向量 叫做表示这一平面内所有向量的一组基底12,ee ?思考1 平面内用来表示一个向量的基底有多少组(有无数组)(有无数组)BAOMa1e2eOMaABxy1
3、./ /2,ABCDABCDABCDDCBAADa ABba bDC BC EF 例 如图梯形中,E、F是,中点,试以为基底表示abABDCFE知识点二、向量的夹角与垂直知识点二、向量的夹角与垂直:OABba两个非零向量两个非零向量 和和 ,作作 , ,则则abAOB叫做向量叫做向量 和和 的的夹角夹角OAa OBb ab夹角的范围:夹角的范围:00180,0180 与与 反向反向abOABab记作记作ab90 与与 垂直,垂直,abOAB ab注意注意:两向量必须两向量必须是是同起点同起点的的0 与与 同向同向abOABab特别的:特别的:例例2.在等边三角形中,求在等边三角形中,求 (1)
4、AB与与AC的夹角;的夹角; (2)AB与与BC的夹角。的夹角。ABC60C0120平面向量的正交分解平面向量的正交分解及坐标表示及坐标表示G=F1+F2F1F2GG=F1+F2叫做重力G的分解类似地,由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量1a1和2 a2,使a=1a1 + 2 a2G与与F1,F2有什么关系有什么关系?把一个向量分解为两个互相垂直的向量,叫做把向量正交分解正交分解若两个不共线向量互相垂直时a1a12 a2F1F2G正交分解正交分解 我们知道,在平面直角坐标系,每一个点都可用一对有序实数(即它的坐标)表示,对直角坐标平面内的每一个向量,如何表示
5、?在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便。ayOxxiyjji分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、 y, 使得a= x i+y j把(x,y)叫做向量a的坐标,记作a = ( x, y )其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标i=j=0=( 1, 0 )( 0, 1 )( 0, 0 )ayOxxiyjjia = ( x, y )yOxajixiyjxiyjb向量a、b有什么关系?ab能说出向量b的坐标吗?b=( x,y )yxAa如图,在直角坐标平面内,以原点O为起点作OA=
6、a,则点A的位置由a唯一确定。yxOji设OA=xi+yj,则向量OA的坐标(x,y)就是点A的坐标;a(x,y)因此,在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。反过来,点A的坐标(x,y)也就是向量OA的坐标。4321-1-2-3-2246ij),(yxP( , )OPxiy jx y 向量的坐标与点的坐标关系O向量向量 P(x ,y)一一 一一 对对 应应OP xiy j练习练习: :在同一直角坐标系内画出下列向量在同一直角坐标系内画出下列向量. .(1)(1,2)a (2)( 1,2)b (1,2)A.xyoaxyo( 1,2)B .b例例1.用基底用基底 i , j
7、分别表示向量分别表示向量a,b,c,d,并求出它们的坐标并求出它们的坐标.-4 -3 -2 -1 1 2 3 4ABij12-2-1Oxyabcd 45323(2,3)ABij 23( 2,3)bij 23( 2, 3)cij 23(2, 3)dij 平面向量的坐标运算:平面向量的坐标运算:1122( ,),(,),( , ),ax ybxyab abax ya 问题: (1)已知 求 的坐标. (2)已知和实数求 的坐标.(二)平面向量的坐标运算:(二)平面向量的坐标运算: 1122(1)abx iy jx iy j1212(,)abxxyy同理得(2)(,)axiy jxiy jxy结论结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3.1-平面向量基本定理 2.3 平面 向量 基本 定理 公开 课件 32 PPT
限制150内