2022年高一数学必修知识点总结及练习题 .pdf
《2022年高一数学必修知识点总结及练习题 .pdf》由会员分享,可在线阅读,更多相关《2022年高一数学必修知识点总结及练习题 .pdf(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高 一 数 学 必 修 1 各 章 知 识 点 总 结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY 的字母组成的集合H,A,P,Y (3) 元素的无序性 : 如: a,b,c和a,c,b是表示同一个集合3. 集合的表示: 如: 我校的篮球队员,太平洋 , 大西洋 , 印度洋 ,北冰洋 (1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2) 集合的表示方法:列举法与描述法。注意:常用数集及其记法:非负整数集(即自然数集)记作: N 正整数集 N* 或 N+ 整数集
2、Z 有理数集 Q 实数集 R 1) 列举法: a,b,c 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。 xR| x-32 ,x| x-32 3) 语言描述法:例:不是直角三角形的三角形 4) Venn图: 4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:x|x2=5二、集合间的基本关系1. “包含”关系子集注意:BA有两种可能( 1)A是 B的一部分,;(2)A与 B是同一集合。反之 : 集合 A不包含于集合B,或集合 B不包含集合 A, 记作 AB或 BA 2“相等”关系:A=B (5 5,
3、且 55,则 5=5) 实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等”即:任何一个集合是它本身的子集。A A 真子集 :如果 A B,且 A B 那就说集合A 是集合B 的真子集,记作AB( 或 BA) 如果 AB, BC , 那么 AC 如果 A B 同时 BA 那么 A=B 3. 不含任何元素的集合叫做空集,记为规定 : 空集是任何集合的子集,空集是任何非空集合的真子集。有 n 个元素的集合,含有2n个子集, 2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A 且属于 B 的元素所组成的集合 , 叫做 A,B 的交集 记作 AB (读作 A交 B),
4、即AB= x|xA,且xB由所有属于集合A 或属于集合B 的元素所组成的集合,叫做 A,B的并集 记作: AB(读作 A并 B),即 AB =x|xA,或 xB) 设 S是一个集合,A是S 的一个子集,由S中所有不属于A的元素组成的集合, 叫做 S中子集 A的补集(或余集)记作ACS,即CSA=,|AxSxx且韦恩图示AB图 1AB图 2性质AA=A A=AB=BA ABA ABB AA=A A=A AB=BA ABABB (CuA) (CuB) = Cu (AB) (CuA) (CuB) = Cu(AB) A (CuA)=U A (CuA)= 例题:1. 下列四组对象,能构成集合的是()A某
5、班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2. 集合 a ,b,c 的真子集共有个3. 若集合 M=y|y=x2-2x+1,xR,N=x|x0 ,则 M与 N的关系是 . 4. 设集合 A=12xx,B=x xa,若 AB,则a的取值范围是5.50 名学生做的物理、化学两种实验,已知物理实验做得正确得有40 人,化学实验做得正确得有31 人,两种实验都做错得有4 人,则这两种实验都做对的有人。6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= . 7. 已知集合 A=x| x2+2x-8=0, B=x| x2-5x+6=0, C=x| S A
6、 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 21 页 - - - - - - - - - x2-mx+m2-19=0, 若 BC,AC=,求 m的值二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f , 使对于集合A中的任意一个数x, 在集合 B中都有唯一确定的数f(x)和它对应,那么就称f :AB为从集合 A到集合 B的一个函数记作:y=f(x),x A其中, x 叫做自变量, x 的取值范围A叫做函数的定义域;与 x 的值相对应的
7、y 值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于1. (5) 如果函数是由一些基本函数通过四则运算结合而成的. 那么, 它的定义域是使各部分都有意义的x的值组成的集合. (6) 指数为零底不可以等于零,(7) 实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:表达式相同 (与表示自变量和函数值的字母无关);定义域一致 (
8、两点必须同时具备) ( 见课本 21 页相关例 2) 2值域 : 先考虑其定义域(1) 观察法(2) 配方法(3) 代换法3. 函数图象知识归纳(1) 定义:在平面直角坐标系中,以函数y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合 C, 叫做函数y=f(x),(x A)的图象 C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、 y为坐标的点(x,y), 均在 C上 . (2) 画法A、 描点法:B、 图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4区间的概念(1)区间的分类:开区间、闭区间、
9、半开半闭区间(2)无穷区间(3)区间的数轴表示5映射一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则 f ,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素 y 与之对应,那么就称对应f :AB 为从集合A 到集合 B 的一个映射。记作“ f (对应关系):A(原象)B(象)”对于映射f:AB来说,则应满足:(1) 集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2) 集合A中不同的元素,在集合B中对应的象可以是同一个;(3) 不要求集合B中的每一个元素在集合A中都有原象。6. 分段函数(1) 在定义域的不同部分上有不同的解析表达式的函数。(2) 各部分的自
10、变量的取值情况(3) 分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果y=f(u)(uM),u=g(x)(xA), 则 y=fg(x)=F(x)(xA) 称为f 、g 的复合函数。二函数的性质1. 函数的单调性 ( 局部性质 ) (1)增函数设函数 y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D内的任意两个自变量x1,x2,当 x1x2时,都有 f(x1)f(x2) ,那么就说f(x)在区间 D上是增函数 . 区间 D称为 y=f(x)的单调增区间. 如果对于区间D 上的任意两个自变量的值x1,x2,当 x1x2 时,都有f(x1)f(x2) , 那么就
11、说f(x)在这个区间上是减函数. 区间 D称为 y=f(x)的单调减区间 . 注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有( 严格的 ) 单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3). 函数单调区间与单调性的判定方法(A) 定义法:1任取 x1,x2D,且 x11,且nN*负数没有偶次方根;0 的任何次方根都是0,记作00n。当n是奇数时,aann,当n是偶数时,)0()0(|aaaaaann2分数指数幂正数的分数指数幂的意义,规定:)1,0(*nNnma
12、aanmnm,) 1, 0(11*nNnmaaaanmnmnm0 的正分数指数幂等于0,0 的负分数指数幂没有意义3实数指数幂的运算性质名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 21 页 - - - - - - - - - (1)rasrraa),0(Rsra;(2)rssraa )(),0(Rsra;(3)srraaab)(),0(Rsra(二)指数函数及其性质1、指数函数的概念:一般地,函数) 1,0(aaayx且叫做指数函数,其中x 是自变量,函数的定义域为R
13、注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a1 0a1 0a0,a0,函数 y=ax与 y=loga(-x)的图象只能是( ) 2. 计算:64log2log273 ;3log422= ;2log227log553125= ; 21343101.016)2()87(064.075.030 = 3. 函数 y=log21(2x2-3x+1) 的递减区间为4. 若函数) 10(log)(axxfa在区间2,aa上的最大值是最小值的3 倍,则 a= 5. 已知1( )log(01)1axfxaax且,( 1)求( )f x的定义域( 2)求使()0fx的x的取值范
14、围第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数)(Dxxfy,把使0)(xf成立的实数x叫做函数)(Dxxfy的零点。2、函数零点的意义:函数)(xfy的零点就是方程0)(xf实数根,亦即函数)(xfy的图象与x轴交点的横坐标。即:方程0)(xf有实数根函数)(xfy的图象与x轴有交点函数)(xfy有零点3、函数零点的求法:1(代数法)求方程0)(xf的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数)0(2acbxaxy(1), 方程02cbxax有两不等实根, 二次函数的图象与
15、x轴有两个交点,二次函数有两个零点(2), 方程02cbxax有两相等实根, 二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点(3), 方程02cbxax无实根, 二次函数的图象与x轴无交点,二次函数无零点5. 函数的模型高中数学必修 2 知识点收集数据画散点图选择函数模型求函数模型不符合实际名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 21 页 - - - - - - - - - 一、直线与方程(1)直线的倾斜角定义: x 轴正向 与直线 向上方向 之
16、间所成的角叫直线的倾斜角。特别地, 当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0 180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即tank。斜率反映直线与轴的倾斜程度。当90,0时,0k;当180,90时,0k;当90时,k不存在。过两点的直线的斜率公式:)(211212xxxxyyk注意下面四点:(1)当21xx时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的
17、坐标先求斜率得到。(3)直线方程点斜式:)(11xxkyy直线斜率k,且过点11, yx注意: 当直线的斜率为0时, k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:bkxy,直线斜率为k,直线在y轴上的截距为b两点式:112121yyxxyyxx(1212,xxyy)直线两点11,yx,22,yx截矩式:1xyab其中直线l与x轴交于点( ,0)a,与y轴交于点(0, )b,即l与x轴、y轴的 截距 分别为,a b。一般式:0CByAx(A,B 不全为 0)注意: 1 各式的适用范
18、围 2 特殊的方程如:平行于 x 轴的直线:by(b 为常数);平行于 y 轴的直线:ax(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平 行 于 已 知 直 线0000CyBxA(00, BA是 不 全 为0的 常 数 ) 的 直 线 系 :000CyBxA(C 为常数)(二)过定点的直线系()斜率为k的直线系:00 xxkyy,直线过定点00, yx;()过两条直线0:1111CyBxAl,0:2222CyBxAl的交点的直线系方程为0222111CyBxACyBxA(为参数),其中直线2l不在直线系中。(6)两直线平行与垂直当111:bxkyl,222:bxk
19、yl时,212121,/bbkkll;12121kkll注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点0:1111CyBxAl0:2222CyBxAl相交交点坐标即方程组00222111CyBxACyBxA的一组解。方程组无解21/ ll;方程组有无数解1l与2l重合(8)两点间距离公式:设1122(,),A x yB xy,()是平面直角坐标系中的两个点,则222121|()()ABxxyy(9)点到直线距离公式:一点00, yxP到直线0:1CByAxl的距离2200BACByAxd(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行
20、求解。二、圆的方程1、圆的定义: 平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心, 定长为圆的半径。2、圆的方程(1)标准方程222rbyax,圆心ba,,半径为 r;(2)一般方程022FEyDxyx当0422FED时,方程表示圆,此时圆心为2,2ED,半径为FEDr42122当0422FED时,表示一个点;当0422FED时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直
21、线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线0:CByAxl,圆222:rbyaxC,圆心baC,到l的距离为22BACBbAad,则有相离与Clrd;相切与Clrd;相交与Clrd(2)设直线0:CByAxl,圆222:rbyaxC,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有相离与Cl0;相切与Cl0;相交与Cl0注:如果圆心的位置在原点,可使用公式200ryyxx去解直线与圆相切的问题,其中00, yx表示切点坐标,r 表示半径。(3)过圆上一点的切线方程:圆 x2+y2=r2,圆上一点为 (x0,y0),则
22、过此点的切线方程为200ryyxx(课本命题 )名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 21 页 - - - - - - - - - 圆 (x-a)2+(y-b)2=r2,圆上一点为 (x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广 )4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆221211:rbyaxC,222222:RbyaxC两圆的位置关系常通过两圆半径的和
23、(差),与圆心距(d)之间的大小比较来确定。当rRd时两圆外离,此时有公切线四条;当rRd时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当rRdrR时两圆相交,连心线垂直平分公共弦,有两条外公切线;当rRd时,两圆内切,连心线经过切点,只有一条公切线;当rRd时,两圆内含;当0d时,为同心圆。三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义 :有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类 :以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示 :用各顶点字母, 如五棱柱EDCBAABCDE或用对角线
24、的端点字母,如五棱柱AD几何特征 :两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义 :有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类 :以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示 :用各顶点字母,如五棱锥EDCBAP几何特征 :侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类 :以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台
25、等表示 :用各顶点字母,如五棱台EDCBAP几何特征 :上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征 :底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征 :底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征: 上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高一数学必修知识点总结及练习题 2022 年高 数学 必修 知识点 总结 练习题
限制150内