2022年高一数学函数解析式的七种求法 .pdf
《2022年高一数学函数解析式的七种求法 .pdf》由会员分享,可在线阅读,更多相关《2022年高一数学函数解析式的七种求法 .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、函 数 解 析 式 的 七 种 求 法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。例 1设)(xf是一次函数,且34)(xxff,求)(xf解:设baxxf)()0(a,则babxabbaxabxafxff2)()()(342baba3212baba或32)(12)(xxfxxf或二、配凑法:已知复合函数( )f g x的表达式,求( )f x的解析式,( )f g x的表达式容易配成( )g x的运算形式时,常用配凑法。但要注意所求函数( )f x的定义域不是原复合函数的定义域,而是( )g x的值域。例 2已知221)1(xxxxf)0(x,求( )f x的解析式解:2)1(
2、)1(2xxxxf,21xx2)(2xxf)2(x三、换元法:已知复合函数( )f g x的表达式时,还可以用换元法求( )f x的解析式。与配凑法一样,要注意所换元的定义域的变化。例 3已知xxxf2) 1(,求)1(xf解:令1xt,则1t,2)1(txxxxf2)1(, 1)1(2) 1()(22ttttf1)(2xxf)1(xxxxxf21) 1()1(22)0(x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例 4 已知:函数)(2xgyxxy与的图象关于点)3 ,2(对称,求)(xg的解析式名师资料总结 - - -精品资料欢迎下载 - - - - - - -
3、 - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 解:设),(yxM为)(xgy上任一点,且),(yxM为),(yxM关于点)3 ,2(的对称点则3222yyxx,解得:yyxx64,点),(yxM在)(xgy上xxy2把yyxx64代入得:)4()4(62xxy整理得672xxy67)(2xxxg五、构造方程组法:假设已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例 5设,)1(2)()(xxfxfxf满足求)(xf解xxfxf)1(2)(显然,0
4、 x将x换成x1,得:xxfxf1)(2)1(解 联立的方程组,得:xxxf323)(例 6 设)(xf为偶函数,)(xg为奇函数,又,11)()(xxgxf试求)()(xgxf和的解析式解)(xf为偶函数,)(xg为奇函数,)()(),()(xgxgxfxf又11)()(xxgxf ,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 5 页 - - - - - - - - - 用x替换x得:11)()(xxgxf即11)()(xxgxf解 联立的方程组,得11)(2xxf
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高一数学函数解析式的七种求法 2022 年高 数学 函数 解析 求法
限制150内