2022年大一第二学期高数期末考试题 .pdf
《2022年大一第二学期高数期末考试题 .pdf》由会员分享,可在线阅读,更多相关《2022年大一第二学期高数期末考试题 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、大一第二学期高数期末考试一、 单项选择题(本大题有 4 小题, 每小题 4 分, 共 16 分) 1.)(0),sin(cos)(处 有则 在设xxxxxf. ( A)(0)2f(B)(0)1f(C)(0)0f(D)()fx不可导 . 2.)时(,则当,设133)(11)(3xxxxxx. (A)( )( )xx与是同阶无穷小,但不是等价无穷小;(B)( )( )xx与是等价无穷小;(C)( )x是比( )x高阶的无穷小;(D)( )x是比( )x高阶的无穷小. 3.若()()( )02xF xtx ft dt,其中()fx在区间上( 1,1)二阶可导且()0fx,则(). (A)函数( )F
2、 x必在0 x处取得极大值;(B)函数( )F x必在0 x处取得极小值;(C)函数( )F x在0 x处没有极值,但点(0,(0)F为曲线( )yF x的拐点;(D)函数( )F x在0 x处没有极值,点(0,(0)F也不是曲线( )yF x的拐点。4.)()(,)(2)()(10 xfdttfxxfxf则是连续函数,且设(A)22x(B)222x(C)1x(D)2x. 二、填空题(本大题有4 小题,每小题4 分,共 16 分)5.xxxsin20)31(lim . 6.,)(cos的一个原函数是已知xfxxxxxxfdcos)(则. 7.lim(coscoscos)22221Lnnnnnn
3、. 8.21212211arcsindxxxx. 三、解答题(本大题有5 小题,每小题8分,共 40 分)9.设函数( )yy x由方程sin()1xyexy确定,求()yx以及(0)y. 10.d)1(177xxxx求11. 求, 设132)(1020)(dxxfxxxxxexfx12.设函数)(xf连续,10()()g xfxt dt, 且0( )limxf xAx,A为常数 . 求( )g x名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 4 页 - - - - -
4、 - - - - 并讨论( )g x在0 x处的连续性 . 13.求微分方程2lnxyyxx满足1(1)9y的解 . 四、 解答题(本大题10 分)14.已知上半平面内一曲线)0()(xxyy, 过点( , )01, 且曲线上任一点M xy(,)00处切线斜率数值上等于此曲线与x轴、y轴、直线xx0所围成面积的2 倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10 分)15.过坐标原点作曲线xyln的切线, 该切线与曲线xyln及 x 轴围成平面图形D. (1)求 D 的面积 A;(2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积V. 六、证明题(本大题有2 小题,每小题4分
5、,共 8 分)16.设 函 数)(xf在0,1上 连 续 且 单 调 递 减 , 证 明 对 任 意 的 , 0 1q,100()()qfxd xqfx dx. 17.设函数)(xf在,0上连续,且0)(0 xdxf,0cos)(0dxxxf.证明:在,0内至少存在两个不同的点21,,使.0)()(21ff(提示:设xdxxfxF0)()()解答一、单项选择题 (本大题有 4 小题 , 每小题 4 分, 共 16 分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4 小题,每小题4 分,共 16 分)5.6e. 6.cxx2)cos(21.7. 2. 8.3. 三、解答题(本大题有5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年大一第二学期高数期末考试题 2022 大一 第二 学期 期末 考试题
限制150内