最新多元概念,极限,连续好幻灯片.ppt
《最新多元概念,极限,连续好幻灯片.ppt》由会员分享,可在线阅读,更多相关《最新多元概念,极限,连续好幻灯片.ppt(81页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3 31 1 多元函数的概念多元函数的概念以前我们接触到的函数 y = f (x)有一个特点, 就是只有一个自变量, 函数 y 是随着这一个自变量的变化而变化的. 我们称为一元函数. 如 y = sinx, y = x2 + 3cosx 等.注注2, 说明二元函数是一元函数的推广说明二元函数是一元函数的推广, 而一元函数则是二元函数的特殊情形而一元函数则是二元函数的特殊情形. 一元一元函数是定义在函数是定义在 xy 面上一条直线面上一条直线(x 轴轴)上的二上的二元函数元函数.类似的类似的, 有有 n 元函数定义元函数定义.设D Rn , 若对任意的 X = (x1, x2, , xn) D
2、Rn , 按某个对应规则 f , 总有唯一确定的实数 z 与之对应, 则称 f 是定义在 D 上的 n 元实值函数. 记作f : D R , X = (x1, x2, , xn) z .并记 z = f ( X ), 或 z = f (x1, x2, , xn).定定 义义 与一元函数类似. 就是要求使这个式子有意义的平面上的点的集合. 求 z = ln (x + y)的定义域 D , 并画出D的图形.x + y 0. 故 定义域 D = (x, y)| x + y 0画直线 y1 = x. 由于 D 中点 (x, y) 的纵坐标 y 要大于直线 y1 = x 上点的纵坐标 y1, 故 D 表
3、示直线 y1 = x 上方点的集合. (不包括边界y1 = x上的点)为画 D 的图形, 由x + y 0, 得 y x = (y1).x + y = 0 xyo如图y xD(不包括直线x + y = 0). .122的图形并画的定义域求DDyxz1 , 012222yxyx即故1| ),(22yxyxD.),(22的距离到原点表示点由于oyxyx 故 D 表示到原点距离不超过1的点的集合. 即, D 为单位圆盘 (包括圆周). xyox2 + y2 = 1122 yx(包括圆周)D以点 X0 = (x0, y0)为中心, 以 为半径的圆内部点的全体称为 X0 的 邻域.即),(0X)()(|
4、 ),(2020yyxxyx| | ),(0XXyxX记 (X0, ) = U (X0, ) X0 , 称为 X0 的去心 邻域.如图),(0X记作X0X0U (X0, ) (X0, ) 当不关心邻域半径时, 简记为U (X0 )和 (X0).设 E 是一平面点集, X0 = (x0, y0)E, 若存在存在邻域 U(X0 , ) E , 则称 X0 为 E 的内点.E 的全体内点所成集合称为 E 的内部, 记为E0.,122为单位圆盘的定义域比如DyxzD = (x, y)| x2 + y2 1 如图xyox2 + y2 = 111D易知易知, 圆内部的每一点都是圆内部的每一点都是 D 的内
5、点的内点. 但但圆周上的点不是圆周上的点不是 D 的内点的内点.x + y = 0 xy0如图D又如 z = ln (x+y)的定义域 D = (x, y)| x+y 0易见, 直线上方每一点都是D的内点. 即 D=D,但直线上的点不是D的内点.设 E 是一平面点集, X0 = (x0, y0)是平面上一个点. 若 X0的任何任何邻域 U(X0 , )内既有属于 E 的点, 又有不属于 E的点, 则称 X0 为 E 的边界点.E 的全体边界点所成集合称为 E 的边界. 记作 E.如, 例1中定义域 D 的边界是直线 x +y = 0 上点的全体. 例2中定义域 D 的边界是单位圆周 x2 +
6、y2 = 1上的点的全体. 如图xyo11x2 + y2 = 1Dx + y = 0 xyoE 的边界点可以是的边界点可以是 E 中的点中的点, 也可以不是也可以不是 E 中的点中的点.D设 E 是一平面点集, 若 E 中每一点都是 E 的内点.即 E E0, 则称 E 是一个开集. 由于总有 E0 E, 因此, E E0 E = E0故也可说, 比如, 例1中 D 是开集, (D = D0 ), 而例2中 D 不是开集.若E = E0 , 则称 E 是一个开集.规定, , R2为开集.xyoE又比如, E 如图若若 E 不包含边界不包含边界, 则则 E 为开集为开集. 若若 E 包含边界包含
7、边界, 则则 E 不是开集不是开集. 非空平面点集非空平面点集 E 为开集的充要为开集的充要条件是条件是 E 中每一点都不是中每一点都不是 E 的边界点的边界点. 即即 E 不含有不含有 E 的边界点的边界点.必要性必要性. . 设 E 为开集, X E,由开集定义知 X 为 E 的内点. 故 X 不是 E 的边界点.充分性充分性. 若 E 中每一点都不是 E 的边界点. 要证 E 为开集. X E,由于 X 不是 E 的边界点. 故必存在X的一个邻域U(X, ),在这个邻域 U(X, )内或者全是 E 中的点. 或者全都不是 E 中的点, 两者必居其一. 由于X E, 故后一情形不会发生.因
8、此, U(X, )内必全是 E 中的点. 故 X E0, 即, E E0 , 所以 E 是开集.设 E 是一非空平面点集, 若X ,YE. 都可用完全含于 E 的折线将它们连接起来, 则称 E 为连通集.如图XYE 连通YXE 不连通从几何上看, 所谓 E 是连通集, 是指 E 是连成一片的. E 中的点都可用折线连接.例1, 2中的 D 都是连通集. 如图x + y = 0 xyoxyo11x2 + y2 = 1设 E 是一平面点集. 比如, 例1中 D 是开区域. 如图. E 从几何上看, 开区域是连成一片的, 不包括边界的平面点集.若 E 是连通的非空开集, 则称 E 是开区域.若 E
9、是开域, 记EEEEE0称为闭区域.如图. E 易见, 例2中的 D 是闭区域. 从几何上看, 闭区域是连成一片的. 包括边界的平面点集.(本书把)开区域和闭区域都叫作区域.8. 设 E R2, 若存在 r 0, 使 E U(O, r), 则称 E 为有界集. 否则称 E 为无界集.易见, 例1中 D 是无界集, 它是无界开区域, 而例2中 D 是有界集, 它是有界闭区域.设 E 是平面点集, X0 是平面上一个点. 若X0的任一任一邻域内总有无限多个点属于 E . 则称 X0 是E 的一个聚点.从几何上看, 所谓 X0 是 E 的聚点是指在 X0 的附近聚集了无限多个 E 中的点. 即, 在
10、 X0 的任意近傍都有无限多个 E 中的点.X0如图1. 聚点定义也可叙述为: 若 X0 的任一邻域内至少含有 E 中一个异于异于 X0 的点. 则称 X0 为 E 的 一个聚点. (自证).2. E 的聚点 X0可能属于 E , 也可能不属于E .3. E 的内点一定是 E 的聚点.4. 若 E 是开区域. 则 E 中每一点都是 E 的聚点. .的聚点中每一点都是则为闭区域若EEEEE.的聚点从而是E即, 区域中的任一点都是该区域的聚点.一般, 集合 E 的边界点不一定是 E 的聚点. 但若 E 是开集, 则 E 的边界点一定是 E 的聚点, 自证.这些概念都可毫无困难地推广到三维空间 R3
11、 中去, 且有类似的几何意义. 它们还可推广到 4 维以上的空间中去, 但不再有几何意义.设 z = f (X) = f (x, y) 的定义域是平面区域 D .按二元函数定义, X = (x, y)D. 可以唯一确定实数 z , 从而确定了空间一个点 M (x, y, z). 当 X 在 D 中变动时, 点 M (x, y, z)在空间中变动, 当 X 取遍 D 中一切点时, M (x, y, z)在三维空间中 织 出一片曲面.即, 二元函数表示空间中一片曲面, D是该曲面在 xy 面上的投影区域.XDM (x, y, z)yxzoz = f (X) = f (x, y)如 z = ax +
12、by + c , 表平面表平面.222表表上上半半球球面面yxaz.222表表下下半半球球面面yxaz注意, 三元函数 u = f (x, y, z)的定义域是 R3 的一个子集.三元函数无几何意义.3 32 2 多元函数的极限与连续多元函数的极限与连续回忆一元函数的极限. 设 y = f (x),)(lim0Axfxx所谓当 x 不论是从 x0的左边还是从x0的右边无限接近于x0时, 对应的函数值无限接近于数 A.表示如图xyA0f (x)f (x)y = f (x)x0 xxx x0. )(lim0语言表示用Axfxx就是 0, 0.当0|x x0| 时, 有|f (x) A | .设二元
13、函数 z = f (X) = f (x, y), 定义域为D. 如图Dz = f (x, y)XX如果当X在D内变动并无限接近于X0时 (从任何方向, 以任何方式),对应的函数值 f (X)无限接近于数 A, 则称A为当X趋近于X0时f (X)的极限.MX0Ayzxof (X)类似于一元函数, f (X)无限接近于数 A可用 | f (X) A | 0, 0, 当, )()(2020时yyxx对应的函数值满足| f (X) A | 则称 A 为z = f (X)的, 当 X 趋近于X0时(二重)极限.记作,)(lim0AXfXX或,),(lim00Ayxfyyxx也可记作 f (X) A(X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 多元 概念 极限 连续 幻灯片
限制150内