《最新多维正态分布教学课件.ppt》由会员分享,可在线阅读,更多相关《最新多维正态分布教学课件.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Ma Xin, North China Electric Power University一、向量与矩阵的基础知识一、向量与矩阵的基础知识正交阵、对角阵正交阵、对角阵矩阵的迹及其性质:矩阵的对角元素之和矩阵的迹及其性质:矩阵的对角元素之和tr(A)=aii矩阵的秩矩阵的秩特征根与特征向量特征根与特征向量l若A为对称阵,则A的全部特征根为实数,故可按大小次序排成1 2 p 。l若A为对称阵, i,j是它的两个不相同的特征根,则相应的特征向量li和lj互相正交,这时A可表示为piiiil l1AMa Xin, North China Electric Power UniversityMa Xin,
2、 North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power University-1.000.001.002.00售电量售电量s s-1.000.001.
3、00利润sw1矩阵乘:在多于一维上投影矩阵乘:在多于一维上投影z1=aw1是是a在在w1方向投影,现在我们再找一个与方向投影,现在我们再找一个与w1垂直的方向垂直的方向w2,z2=aw2是是a在在w2方向上的投影方向上的投影.这样,这样,a=(a1, a2) z=(z1,z2)=aw 。 w=(w1,w2)为一正交阵。为一正交阵。l几何意义:坐标轴旋转几何意义:坐标轴旋转l前地区供电局例,设前地区供电局例,设w2T=(- 0.643, 0.766 ),221122321222122321,766. 0643. 0643. 0766. 0),(awzawzzzwwaawwww则计算结果计算结果M
4、a Xin, North China Electric Power UniversityZ13210-1-2Z22.01.51.0.50.0-.5-1.0-1.5-2.0w1w2-1.000.001.002.00售售电电量量s s-1.000.001.00利润sw1w2Ma Xin, North China Electric Power University四、随机向量及其数字特征四、随机向量及其数字特征Ma Xin, North China Electric Power University均值向量均值向量Ma Xin, North China Electric Power Universi
5、ty自协方差矩阵自协方差矩阵Ma Xin, North China Electric Power UniversityMa Xin, North China Electric Power University若若xi独立独立Ma Xin, North China Electric Power University总方差总方差Ma Xin, North China Electric Power University随机向量的相关矩阵随机向量的相关矩阵Ma Xin, North China Electric Power University相关阵与协方差阵相关阵与协方差阵Ma Xin, North
6、 China Electric Power UniversityMa Xin, North China Electric Power University简单随机抽样简单随机抽样Ma Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power University样本协方差矩阵样本协方差矩阵Ma Xin, North China Electric Power University样本相关矩阵样本相关矩阵Ma Xi
7、n, North China Electric Power University标准化随机向量标准化随机向量为了克服变量量纲不同对统计分析结果带来为了克服变量量纲不同对统计分析结果带来的影响,往往采用标准化变量的影响,往往采用标准化变量标准化随机向量有:标准化随机向量有:*XXXX0X11)()()(*nREMa Xin, North China Electric Power University五、多维正态分布五、多维正态分布Ma Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power UniversityMa Xin, North China Electric Power University
限制150内