《人教版六年级下册数学教案模板汇编7篇.docx》由会员分享,可在线阅读,更多相关《人教版六年级下册数学教案模板汇编7篇.docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版六年级下册数学教案模板汇编7篇人教版六年级下册数学教案模板汇编7篇 作为一名老师,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?以下是小编精心整理的人教版六年级下册数学教案7篇,欢迎阅读与收藏。 人教版六年级下册数学教案篇1 一、学习目标 (一)学习内容 义务教育教科书数学(人教版)六年级下册第五单元第6869页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。 (二)核心能力 经历将具体问题“数学化”的过程,初步
2、形成模型思想,发展抽象能力、推理能力和应用能力。 (三)学习目标 1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。 2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。 (四)学习重点 了解简单的鸽巢问题,理解“总有”和“至少”的含义。 (五)学习难点 运用“鸽巢原理”解决相关的实际问题或解释相关的现象。 (六)配套资源 实施资源:鸽巢原理名师教学课件 二、学习设计 (一)课堂设计 1.谈话导入 师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你
3、抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。 师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。 2.问题探究 (1)呈现问题,引出探究 出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。 师:“总有”是什么意思?“至少”有2支是什么意思? 学生自由发言。 预设:一定有 不少于两只,可能是2支,也可能是多于2支。 就是不能少于2支。 (2)体验探究,建立模型 师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放
4、?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现? 小组活动:学生思考,摆放。 枚举法 师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。 预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。 师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗? (不一定,也可能放在其它笔筒里。) 师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放? 预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。 师:这种放法可以记作(3,1,0) 师:这3支
5、铅笔一定要放在第一个笔筒里吗? (不一定) 师:但是不管怎么放总有一个笔筒里放进3支铅笔。 预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。 师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记? 预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。 预设4:还可以(2,1,1) 或者(1,1,2)、(1,2,1) 师:还有其它的放法吗? (没有了) 师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有) 师:这几种放法如果用一句话概括可以怎样说? (装得
6、最多的笔筒里至少装2支。) 师:装得最多的那个笔筒一定是第一个笔筒吗? (不一定,哪个笔筒都有可能。) 假设法 师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放? 预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。 师:“平均放”是什么意思? 预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。 师:为什么要先平均分? 学生自由发言。 引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。 师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。 师:这种
7、思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。 (3)提升思维,建立模型 加深感悟 师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。 预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。 师:把7支笔放进6个笔筒里呢?还用摆吗? 学生自由发言。 师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢? 师:你发现了什么? 预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔
8、。 师:你的发现和他一样吗? 学生自由发言。 师:你们太了不起了! 师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况? 练一练: 师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?” 师:说说你的想法。 师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。 介绍狄利克雷: 师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。 建立模型 出示例2:一位同学学完
9、了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗? 学生独立思考、讨论后汇报: 师:怎样用算式表示我们的想法呢?生答,板书如下。 732本1本(213) 师:如果有10本书会怎么样能?会用算式表示吗?写下来。 出示: 把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 1033本1本(314) 师:观察板书你有什么发现? 预设:我发现“总有一个抽屉里至少有2本”,只要用“商1”就可以得到。 师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。 学生讨论,汇报: 8322213 8322224 师:
10、到底是“商1”还是“商余数”呢?谁的结论对呢?在小组里进行研究、讨论。 师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关? 预设:我认为根“商”有关,只要用“商1”就可以得到。 师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商1”就可以了。 引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足,那么不管怎样放,总有一个抽屉里至少放(b1)本书。这就是抽屉原理的一般形式。 鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。 3.巩固练习 (1)学习了“鸽巢原理”,我们再回到课前的
11、“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。 (2)第69页的做一做第1、2题。 4.全课总结 师:通过这节的学习,你有什么收获? 小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。 (三)课时作业 1.一个小组共有13名同学,其中至少有几名同学同一个月出生? 答案:2名。 解析:把112月看作是12个抽屉,131211112 2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。 答案:8名。 解析:从6岁到12岁一共有7个年龄段,
12、即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用718(名) 第二课时鸽巢原理 中原区汝河新区小学师芳 一、学习目标 (一)学习内容 义务教育教科书数学(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。 (二)核心能力 在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。 (三)学习目标 1进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
13、 2经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。 (四)学习重点 引导学生把具体问题转化为“抽屉原理”。 (五)学习难点 找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。 (六)配套资源 实施资源:鸽巢原理名师教学课件 二、学习设计 (一)课堂设计 1.情境导入 师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。 师:神奇吧!你们想不想表演一个呢? 师:现在老师这里还是刚才这副牌,请你抽牌,
14、至少抽多少张牌才能保证至少有2张牌的点数相同呢? 在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理) 2.探究新知 (1)学习例3 猜想 出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球? 预设:2个、3个、5个 验证 师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。 可以用表格进行整理,课件出示空白表格: 学生独立思考填表,小组交流。 全班汇报。 汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。 课件汇总,思考:从这
15、里你能发现什么? 教师:通过验证,说说你们得出什么结论。 小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。 小结 师:为什么球的个数一定要比抽屉数多?而且是多1呢? 预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。 师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。 板书:只要摸出的球比球的颜色种数至少多1,
16、就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。 (2)引导学生把具体问题转化成“抽屉原理”。 师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢? 思考:摸球问题与“抽屉原理”有怎样的联系? 应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么? 学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。 从最特殊的情况
17、想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a21b,当b1时,a就最小。所以一次至少应拿出1213个球,就能保证有2个球同色。 结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。 3.巩固练习 (1)完成教材第70页“做一做”第1题。 (2)完成教材第70页“做一做”第2题。 4.课堂总结 师:这节课你学到了什么知识?谈谈你的收获和体验。 (三)课时作业 1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手
18、套? 答案:5只。 解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。 2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同? 答案:16条。 解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:53116。 人教版六年级下册数学教案篇2 教学内容: 成数(课本第9页例2) 教学目标: 1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。 2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。 教学重点: 理解成数的意义。 教学难点: 解决解答有关成数的实际问题。 教学过程: 一、复习 1、填
19、空 四折是十分之(),改写成百分数是()。 六折是十分之(),改写成百分数是()。 七五折是十分之(),改写成百分数是()。 2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元? 二、创设情境,导入新课 同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育 三、探究体验 (一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。 1、让学生尝试把二成及三成五改写成百分数。 2、让学生
20、说说除了农业上使用成数,还有哪些行业是使用了成数的知识。 3、练习:将下列成数改写成百分数。 二成=()%;四成五=()%;七成二=()%。 (二)教学例2 1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时? 2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1? 3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。 4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。 350(1-25%)=262.5(万千瓦时) 或者引导学生列出 350-35025
21、%=262.5(万千瓦时) 四、巩固练习 1、三成=()%;五成六=()%;八成三=()%; 2、第9页做一做 3、解决问题 (1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨? (2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类) (3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少? (4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年
22、年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双? 五、课堂总结 这节课你收获了什么? 人教版六年级下册数学教案篇3 教学目标: 1使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。 2使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。 3使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。 教学重点:初步认识正数和负数以及读法和写法。 教学难点:理解0既不是正数,也不是负数。 教学具准备:多媒体课件、温度计、练习纸、卡片等。 教学过程: 一、游戏导入(感受生活中的相反现象) 1、游
23、戏:我们来玩个游戏轻松一下,游戏叫做我反我反我反反反。游戏规则:老师说一句话,请你说出与它相反意思的话。 向上看(向下看)向前走200米(向后走200米)电梯上升15层(下降15层)。 2、下面我们来难度大些的,看谁反应最快。 我在银行存入了500元(取出了500元)。知识竞赛中,五(1)班得了20分(扣了20分)。 10月份,学校小卖部赚了500元。(亏了500元)。零上10摄氏度(零下10摄氏度)。 说明什么是相反意义的量(意义正好相反) 3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物
24、的准备。下面就请大家一起和我走进天气预报。(天气预报片头) 二、教学例1 1、认识温度计,理解用正负数来表示零上和零下的温度。 课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。 这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢? B、现在你能看出南京是多少摄氏度吗?(是0。)你是怎么知道的?(那里有个0,表示0摄氏度)。 (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格) 指出:上海的气温比0要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上
25、)。 (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0比起来,又怎样了呢?(比南京的0要低)你能用一个手势来表示它和0的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗? (4)比较:“4”和“4”的意义相同吗?有什么不同?(不一样,一个在0以上,一个在0以下)。 上海的气温比0高,是零上4摄氏度,我们可以记作+4,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4也就是+4。(板书) 负号能不能省略不写?为什么? 北京的气温比0低
26、,是零下4摄氏度。我们可以用-4来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。 (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。 2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上) 3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。 4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。 三、学习珠峰、吐鲁番盆地的海拔表达方
27、法(P4第2题) 1、同学们你们知道吗?世界第一高峰珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。 2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么? 3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。 你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。 4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家
28、再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗? (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。 吐鲁番盆地的海拔可以记作:-155米。(板书) (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。 四、小组讨论,归纳正数和负数。 人教版六年级下册数学教案篇4 一、创设情境,提出问题 师:同学们,你们知道一个人去找工作时,他一般最关注什么? 生:工资。 生:工作环境和待遇。 师:找工作时工资的多少往往是人们最关心的,李叔叔看到一份超市招聘公告上写着:本超市工作人员
29、月平均工资1000元,现招收员工若干。李叔叔一看条件不错,就应聘做了超市的一名工作人员。可第一个月他只拿到工资500元,第二个月也只有600元,问了一些同事大部分都是600元,少数超过600元。他找到了超市副经理说:你们欺骗了我,我已经问过其他工人没有一个工人的工资超过1000元,平均工资怎么可能是每月1000元呢?超市副经理拿出了超市工作人员的工资表: 某超市工作人员月工资如下表单位:元经理副经理员工A员工B员工C员工D员工E员工F员工G员工H员工I 月工资xxxx00xxxx 问题1请大家仔细观察表中的数据,讨论回答下面的问题: (1)副经理说月平均工资1000元是否欺骗了李叔叔? (2)
30、你有什么想法? 生:刚才我算了一下,这11个数的平均数是1000,所以月平均工资1000元没有欺骗。 师:对,我们学过平均数的知识,平均数是1000元是没有错。 那为什么李叔叔只能拿到600元。大家可以阐述一下自己的观点。 生:因为两位经理的工资很高,带动了员工的平均公资。 师:,看来这组数据中,由于出现了两个特别的数据,所以平均数1000不能真实反映大多数员工的工资水平,你认为应该用什么数反映这个超市的工资水平比较合理呢?请大家观察这些数据的特点,然后说说你的想法。 学生小组讨论: 生1:我们小组讨论后认为用600元是比较好的,因为这里600元的人是最多的,有4个人。 生2:我认为700元比
31、较合理,因为它是这组数据的中位数。 师:大家分析的不错,很有自己的想法。平均数会受一些特别偏大或偏小的数据的影响。那么李叔叔最有可能挣到多少钱? 生:600元 师:600在这里出现次数最多,它代表的是多数人的工资水平,所以600就是这组数据的众数。 二、探究新知。 板书:众数。 师:请大家试着说一说众数的意义;然后教师小结出示概念。齐读概念。 师:现在,我们已经知道了三个统计量,那么,面对具体的问题,我们应该选择哪个统计量来描述数据的集中趋势呢、下面请看这个问题。 五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况。(单位:米) 1.41,1.41,1.41,1.44,
32、1.45,1.4,1.48,1.49 151,1.51,1.51,1.51,1.52,1.54,1.54 你认为参赛队员的身高是多少比较合适? 学生小组合作。根据学生汇报,教师小结。从审美角度以及队伍整齐观点来看应以众数1.51为标准选择队员身高会比较均匀。 。 三、分析数据,尝试统计决策。 师:同学们,全世界都关注的奥运会就要在北京召开了,我国的体育健儿正在紧张的训练,准备迎战奥运会。国家队的教练想在两名优秀的射击运动员中选择一名去参加比赛:(出示两名运动员成绩) 甲:9.5109.49.59.79.59.49.39.49.3 乙:xxxx.39.89.5109.88.79.9 看到两名运动
33、员的成绩,大家能否猜想一下,教练会选择谁去呢? 生1:我认为会选甲,甲的成绩很高。 生2:我想会选乙,乙打中10环的多。 生3:我想应该看看他们的平均分。 师:大家说的很好,大胆的说出了自己的想法;让我们用掌声来鼓励他们。那我们就先从平均数入手,大家动手做一做,看看他们的平均数是多少?(可以同桌合作) 生:老师,平均数一样,都是9.5。 师;平均数一样我们该怎么办呢? 生1:看众数。甲的众数是9.5。 生2:9.4也出现三次,9.4也是众数。那两个都是众数吗? 师:当然,众数可以不止一个。也可以没有,比如说我们班前五名同学的成绩就没有重复的,那自然就没有众数了。 生:乙的众数是10,所以乙获胜
34、的机会大一些。 师:在平均数相同时,我们应该看众数。 四、学生畅谈收获。 五:教师小结。 同学们,通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数,中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。 案例反思: 1、创设问题情境,教学开始,我提出的是一个生活中的真实问题。让学生在参与中引发他们的理性认识,通过学生的独立思考和交流,引起了学生对月工资水平的认知冲突,发现单靠平均数来描述数据特征有时是不合适的。让学生从具体问题中体会数学在生活中的重要性 2、在分析讨论中促进学生对概念的理解,众数的概念,我没有直接给出,而是通过学生观察、
35、分析、讨论、在共享集体思维成果的基础上逐步建构的,这样做使学生逐步体会到这三个统计量都反映一组数据的集中趋势,但描述的角度并不相同,三者之间既有联系又有区别,同时也渗透出了他们的优越性与局限性。可以比较全面、正确地理解所学知识。教学中,让学生通过思考总结,如射击队员的选择,数据越多,频率越稳定。如能经过更多数据的收集和整理,根据方差的特点由数据的稳定性及波动大小再考虑一下其他因素,可能结果会不一样。对不完善的地方再加以补充,充分发挥学生在学习中的主体地位,同时,教师作为参与者,主动加入到学生的讨论中,对学生的认识起到帮助和促进的作用。 人教版六年级下册数学教案篇5 教学内容: 人教版小学数学教
36、材六年级上册第9697页例1及相关练习。 教学目标: 1通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。 2能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。 教学重点: 看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。 教学难点: 根据统计图进行简单的数据分析。 教学准备: 课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。 教学过程: 一、创设情境,谈话激趣 1出示教材第96页情境图,说说同学们正在干什么? 2在这些体育项目中,你喜欢什
37、么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图) 喜欢的项目 乒乓球足球跳绳踢毽其他人数 联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。 二、整理数据,引入新课 1通过这张统计表,我们可以得到什么信息? 预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。 2如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较? 3如何计
38、算喜欢各种运动项目的人数占全班人数的百分之多少呢? 4学生进行口算或笔算,完成统计表,并进行校对。 喜欢的项目 乒乓、球足球、跳绳、踢毽、其他 人数 128569 百分比 30%20%12.5%15%22.5% 先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。 三、合作交流,探究新知 1认识扇形统计图 (1)如果我用这样一张图来统计我们最喜欢的运动项目,用这个扇形表示乒乓球的30%,你觉得这整个圆表示的是什么? (2)乒
39、乓球的30%又表示什么? 预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。 (3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。) (4)根据学生回答完成扇形统计图。 (5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题) (6)想想各个扇形的大小与什么有关系? (7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。 2理解扇形统计图的特征 (1)看图说说,在这幅统计图中你还可以知道哪些
40、信息? 预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。 (2)说说这样的统计图有什么优势? 预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。 (3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。 通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。 3尝试练习 出示教材第97页“做一
41、做”的内容。 (1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。) (2)说说从图上你得到了哪些信息? (3)如果每天喝一袋250g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250g的关系,进而算出各种营养成分多少克。 人教版六年级下册数学教案篇6 教学目标: 1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。 2、进一步理解等底等高的圆柱和圆锥之间的关系。 3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。 教学重难点:综合应用所学知识解决实际问题。 教学过程: 一、复习回顾 1、等底等高的圆柱与圆锥体积之间有怎样的关系? 2、圆锥的体积怎样计算? 二、基本练习 1、填空 (1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。 (2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。 (3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削
限制150内