《圆周角定理》-(第1课时)-教案-拓展版.docx
《《圆周角定理》-(第1课时)-教案-拓展版.docx》由会员分享,可在线阅读,更多相关《《圆周角定理》-(第1课时)-教案-拓展版.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流圆周角定理-(第1课时)-教案-拓展版【精品文档】第 8 页圆周角定理(第1课时) 教案 拓展版一、教学目标知识与技能1理解圆周角的概念2掌握圆周角与圆心角的关系3掌握同弧或等弧所对的圆周角相等数学思考与问题解决1通过观察、猜想、验证、推理,培养学生探索数学问题的能力和方法2学会以特殊情况为基础,通过转化来解决一般问题的方法,体会分类的数学思想情感、态度1通过定理证明的过程,体验数学活动的探索性和创造性,感受证明的严谨性2通过小组活动讨论,体会在解决问题的过程中与他人合作的重要性,培养团队意识3体验数学与实际生活的紧密联系二、教学重点、难点重点:圆周角的
2、概念及圆周角定理难点:圆周角定理的证明三、教学过程设计(一)复习引入1圆心角的概念是什么?2前面我们学习了一个反映圆心角、弧、弦三个量之间关系的一个结论,这个结论是什么?师生活动:教师出示问题,学生思考、回顾前面所学的内容答:1顶点在圆心的角叫做圆心角;2在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也都分别相等设计意图:通过复习前面学过的知识,为新内容的学习做铺垫(二)探究新知想一想 在射门游戏中(如图),球员射中球门的难易程度与他所处的位置B对球门AC的张角(ABC)有关当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角ABC,AD
3、C,AEC观察图中的ABC,ADC,AEC,你能发现它们有什么共同特征吗?师生活动:教师出示问题,学生小组讨论,最后教师引导学生得出圆周角的概念答:发现:(1)它们的顶点都在圆上;(2)两边分别与圆有一个交点我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角设计意图:让学生通过观察、思考、合作交流,探究得出圆周角的概念做一做 如图,AOB=80(1)请你画出几个所对的圆周角,这几个圆周角有什么关系?与同伴进行交流(2)这些圆周角与圆心角AOB的大小有什么关系?你是怎样发现的?与同伴进行交流师生活动:教师出示问题,学生小组讨论,教师引导学生得出结论答:(1)能画出无数个,如下图所示通过度量可以发
4、现:ADB,ACB,AEB这几个圆周角相等(2)通过度量可以发现:这些圆周角都等于圆心角AOB的一半证明:如下图所示,在以点A,B为端点的优弧上任取一点C,连接AC,OC,BC,延长CO交于点MOB=OC,1=2又OA=OC,4=5又3+6=1+2+4+5,3+6=2(1+5),即AOB=2ACBACB=AOB=80=40结论:这样的圆周角有许多个,只要在上任取一点且与点A,B分别相连即可得到,这些角都相等,且等于AOB的一半设计意图:这里把直观操作与逻辑推理有机结合,使将要进行的推理论证成为学生观察、实验、探究得出结论的自然延续议一议 在下图中,改变AOB的度数,你得到的结论还成立吗?怎样证
5、明你的猜想?师生活动:教师出示问题,学生小组讨论,教师引导学生得出结果答:改变AOB的度数,上面的结论仍然成立证明过程如下:已知:如图,C是所对的圆周角,AOB是所对的圆心角求证:C=AOB分析:根据圆周角和圆心的位置关系,分三种情况讨论:(1)圆心O在C的一条边上,如下图(1);(2)圆心O在C的内部,如下图(2);(3)圆心O在C的外部,如下图(3)在三种位置关系中,我们选择(1)给出证明,其他情况可以转化为(1)的情况进行证明证明:(1)圆心O在C的一条边上,如图(1)AOB是AOC的外角,AOB=A+COA=OC,A=CAOB=2C,即C=AOB情况(2)和情况(3)可以转化为情况(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆周角定理 圆周角 定理 课时 教案 拓展
限制150内