《MBA数学公式汇总.doc》由会员分享,可在线阅读,更多相关《MBA数学公式汇总.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一部分算术一、比和比例1、比例具有以下性质:(1)(2)(3)(4)(5)(合分比定理)2、增长率问题设原值为,变化率为,若上升若下降升注意:3、增减性本题目可以用:所有分数,在分子分母都加上无穷(无穷大的符号无关)时,极限是1来辅助了解。助记:二、指数和对数的性质(一)指数1、2、3、4、5、6、7、(二)对数1、对数恒等式2、3、4、5、6、换底公式7、第二部分初等代数一、实数(一)绝对值的性质与运算法则1、2、3、4、5、6、(二)绝对值的非负性即归纳:所有非负的变量1、正的偶数次方(根式),如:2、负的偶数次方(根式),如:3、指数函数考点:若干个非负数之和为0,则每个非负数必然都为
2、0.(三)绝对值的三角不等式二、代数式的乘法公式与因式分解(平方差公式)2、(二项式的完全平方公式3、(巧记:正负正负)4、(立方差公式)5、三、方程与不等式(一)一元二次方程设一元二次方程为,则1、判别式二次函数的图象的对称轴方程是,顶点坐标是。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即,和(顶点式)。2、判别式与根的关系之图像表达= b24ac0= 00)f(x) = 0根无实根f(x) 0解集x x2XRf(x)0解集x1 x 0且 0(2)ax2+ bx + c0对任意x都成立,则有:a0且 04、要会根据不等式解集特点来判断不等式系数的特点(三)其他几个重要不等式1
3、、平均值不等式,都对正数而言:两个正数:n个正数:注意:平均值不等式,等号成立条件是,当且仅当各项相等。2、两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系是(助记:从小到大依次为:调和几何算方根)注意:等号成立条件都是,当且仅当各项相等。3、双向不等式是:左边在时取得等号,右边在时取得等号。四、数列(一)1、公式:2、公式:(二)等差数列1、通项公式2、前n项和的3种表达方式第三种表达方式的重要运用:如果数列前n项和是常数项为0的n的2项式,则该数列是等差数列。3、特殊的等差数列常数列自然数列奇数列偶数列etc.4、等差数列的通项和前的重要公式及性质(1)通项(等差数列),有(
4、2)前的2个重要性质.仍为等差数列.等差数列和的前,则:(三)等比数列1、通项公式2、前n项和的2种表达方式,(1)当时后一种的重要运用,只要是以q的n次幂与一个非0数的表达式,且q的n次幂的系数与该非0常数互为相反数,则该数列为等比数列(2)当时3、特殊等比数列非0常数列以2、(-1)为底的自然次数幂4、当等比数列的公比q满足0,=0,0,等价于直线与圆相交、相切、相离;(2)考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。2、两个圆的位置关系 相交 相切 相离三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB s
5、in(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式si
6、n(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2)cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2)tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos
7、(A-B)sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n22+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
限制150内