个人精心整理!高中数学联赛竞赛平面几何四大定理~及考纲.doc





《个人精心整理!高中数学联赛竞赛平面几何四大定理~及考纲.doc》由会员分享,可在线阅读,更多相关《个人精心整理!高中数学联赛竞赛平面几何四大定理~及考纲.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1、数学竞赛考纲二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点-费马点。到三角形三顶点距离的平方和最小的点-重心。三角形内到三边距离之积最大的点-重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的简单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包
2、及应用。2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。三倍角公式,三角形的一些简单的恒等式,三角不等式。第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子
3、定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。5、其它 抽屉原理。容斥原理。极端原理。集合的划分。覆盖。梅涅劳斯定理托勒密定理西姆松线的存在性及性质(西姆松定理)。赛瓦定理及其逆定理。一、平面几何1. 梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与ABC的三边AB、BC、CA或其延长线交于
4、F、D、E点,那么(AF/FB)(BD/DC)(CE/EA)=1。 或:设X、Y、Z分别在ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。证明:当直线交ABC的AB、BC、CA的反向延长线于点D、E、F时,(AD/DB)*(BE/EC )*(CF/FA)=1逆定理证明:证明:X、Y、Z分别在ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一过点A作AGBC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三
5、式相乘得:(AF/FB)(BD/DC)(CE/EA)=(AG/BD)(BD/DC)(DC/AG)=1证明二过点C作CPDF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FBBD/DCCE/EA=AF/FBFB/PFPF/AF=1证明四过三顶点作直线DEF的垂线,AA,BB,CC有AD:DB=AA:BB 另外两个类似, 三式相乘得1得证。如百科名片中图。 推论在ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是=BL/LC、=CM/MA、=AN/NB。于是AL、BM、CN三线交于一点的充要条件是=-1。(注意与塞瓦定理相区分,那里是=1)第一角元形式
6、的梅涅劳斯定理如图:若E,F,D三点共线,则(sinACF/sinFCB)(sinBAD/sinDAC)(sinCBE/sinABE)=1 即上图中的蓝角正弦值之积等于红角正弦值之积该形式的梅涅劳斯定理也很实用证明:可用面积法推出:第一角元形式的梅氏定理与顶分顶形式的梅氏定理等价。第二角元形式的梅涅劳斯定理在平面上任取一点O,且EDF共线,则(sinAOF/sinFOB)(sinBOD/sinDOC)(sinCOE/sinAOE)=1。(O不与点A、B、C重合)梅涅劳斯球面三角形定理在球面三角形ABC中,三边弧AB,弧BC,弧CA(都是大圆弧)被另一大圆弧截于P,Q,R三点,那么(sin弧AP
7、/sin弧PB)(sin弧BQ/sin弧QC)(sin弧CR/sin弧RA)=1意义使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还是可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。梅涅劳斯定理的对偶定理是塞瓦定理。2.赛瓦定理在ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 推论利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=(CD*co
8、tA)/(CD*cotB)*(AE*cotB)/(AE*cotC)*(BF*cotC)/(BF*cotA)=1,所以三条高CD、AE、BF交于一点。可用塞瓦定理证明的其他定理;三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1且因为AF=BF 所以 AF/FB必等于1 ,所以三角形三条中线交于一点,即为重心用塞瓦定理还可以证明三条角平分线交于一点此外,可用定比分点来定义塞瓦定理:在ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是=BL/LC、=CM/MA、=AN/NB。于是AL、BM
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 个人 精心 整理 高中数学 联赛 竞赛 平面几何 四大 定理

限制150内