导数结合洛必达法则巧解高考压轴题05412.doc
《导数结合洛必达法则巧解高考压轴题05412.doc》由会员分享,可在线阅读,更多相关《导数结合洛必达法则巧解高考压轴题05412.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流导数结合洛必达法则巧解高考压轴题05412【精品文档】第 7 页导数结合洛必达法则巧解高考压轴题 第一部分:历届导数高考压轴题 (全国2理)设函数f(x)(x1)ln(x1),若对所有的x0,都有f(x)ax成立,求实数a的取值范围(全国1理)已知函数.()设,讨论的单调性;()若对任意恒有,求的取值范围.(全国1理)设函数()证明:的导数;()若对所有都有,求的取值范围(全国2理)设函数()求的单调区间;()如果对任何,都有,求的取值范围(辽宁理)设函数.求的单调区间和极值;是否存在实数,使得关于的不等式的解集为?若存在,求的取值范围;若不存在,试说明
2、理由.(新课标理)设函数=.()若,求的单调区间;()若当x0时0,求a的取值范围.(新课标文)已知函数.()若在时有极值,求函数的解析式;()当时,求的取值范围.(全国大纲理)设函数.()证明:当时,;()设当时,求的取值范围.(新课标理)已知函数,曲线在点处的切线方程为.()求、的值;()如果当,且时,求的取值范围.例题:若不等式对于恒成立,求的取值范围第二部分:泰勒展开式 1.其中;2. 其中;3.,其中;4. ,其中;第三部分:洛必达法则及其解法洛必达法则:设函数、满足:(1);(2)在内,和都存在,且;(3) (可为实数,也可以是).则.1.(新课标理)已知函数,曲线在点处的切线方程
3、为.()求、的值;()如果当,且时,求的取值范围.常规解法()略解得,.()方法一:分类讨论、假设反证法由()知,所以.考虑函数,则.(i)当时,由知,当时,.因为,所以当时,可得;当时,可得,从而当且时,即;(ii)当时,由于当时,故,而,故当时,可得,与题设矛盾.(iii)当时, ,而,故当时,可得,与题设矛盾.综上可得,的取值范围为.注:分三种情况讨论:;不易想到.尤其是时,许多考生都停留在此层面,举反例更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.洛必达法则解法当,且时,即,也即,记,且则,记,则,从而在上单调递增,且,因此当时,当时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 结合 洛必达 法则 高考 压轴 05412
限制150内