最新人教版八年级数学上册全册教案.doc
《最新人教版八年级数学上册全册教案.doc》由会员分享,可在线阅读,更多相关《最新人教版八年级数学上册全册教案.doc(129页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十一章三角形学科: 数学 任课教师: 授课时间:姓名年级性别教学课题三角形教学目标1:知识目标:(1) 知道什么是三角形及三角形的分类(2) 知道三角形的三边及三角的关系(3) 知道三角形的高、中线与角平分线(4) 了解三角形的性质及其应用2:能力目标: 根据三角形的性质会计算三角形的边和角 重点难点重点:三角形的分类及三角三边关系难点:三角三边关系的应用课前检查作业完成情况:优 良 中 差 建议_课堂教学过程教学内容导入阶段: 通过交谈了解学生的学习难点,并给与学生鼓励在学习上建立起信心并拉近老师与学生的心里距离,为后面的学习做好铺垫知识授课阶段:三角形一、三角形:由不在同一条直线上的三条
2、线段首尾顺次相接所组成的图形叫做三角形。如右图:线段AB,BC,CA是三角形的边,点A,B,C是三角形的顶点,A,B,C是相邻两边组成的角,叫做三角形的内角,简称三角形的角,记作“ABC”。四、公式:面积:S=底高 周长:C=a+b+c三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线注意:三角形有三条中线,且它们相交三角形内部一点画三角形中线时只需连结顶点及对边的中点即可(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高注意:三
3、角形的三条高是线段画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高(二)三角形三边关系定理三角形两边之和大于第三边,故同时满足ABC三边长a、b、c的不等式有:a+bc,b+ca,c+ab三角形两边之差小于第三边,故同时满足ABC三边长a、b、c的不等式有:ab-c,ba-c,cb-a注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性例如起重机的支架采用三角形结构就是这个道理三角形内角和性质的推理方法有多种,常见的
4、有以下几种:(四)三角形的内角结论1:三角形的内角和为180表示: 在ABC中,A+B+C=180(1)构造平角可过A点作MNBC(如图) 可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得 邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余表示:如图,在直角三角形ABC中,C=90,那么A+B=90(因为A+B+C=180)注意:在三角形中,已知两个内角可以求出第三个内角如:在ABC中,C=180(A+B)在三角形中,已知三个内角和的比或它们之间的关系,求各内角如:ABC中,已知A:B:C=2:3:4,求A、B、C的度数
5、(五)三角形的外角1意义:三角形一边与另一边的延长线组成的角叫做三角形的外角如图,ACD为ABC的一个外角,BCE也是ABC的一个外角,这两个角为对顶角,大小相等2性质:三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.如图中,ACD=A+B , ACDA , ACDB.三角形的一个外角与与之相邻的内角互补课堂检测课后巩固作业:复习本节内容,明确考试要求和考试内容第十二章 全等三角形 单元要点分析 教学内容 本章的主要内容是全等三角形主要学习全等三角形的性质以及探索判定三角形全等的方法,并学会怎样应用全等三角形进行证明,本章划分为三个小节,第一节学习三
6、角形全等的概念、性质;第二节学习三角形全等的判定方法和直角三角形全等的特殊判定方法;第三节利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明 教材分析 教材力求创设现实、有趣的问题情境,使学生经历从现实活动中抽象出几何模型和运用所学内容解决实际问题的过程在内容呈现上,把研究三角形全等条件的重点放在第一个条件上,通过“边边边”条件探索什么是三角形的判定,如何判定,怎样进行推理论证,怎样正确地表达证明过程学生开始学习三角形判定定理时的困难在于定理的证明,而这些推理证明并不要求学生掌握为了突出判定方法这条主渠道,教材都作为基本事实提出来,在画图、实验中让学生知道它们的正确性就可以了在
7、“角的平分线的性质”一节中的两个互逆定理,只要求学生了解其条件与结论之间的关系,不必介绍互逆命题、互逆定理等内容,这将在“勾股定理”中介绍 三维目标 1知识与技能 在探索全等三角形的性质与判定中,提高认知水平,积累数学活动经验 2过程与方法 经历探索三角形全等的判定的,发展空间观念和有条理的表达能力,掌握两个三角形全等的判定并应用于实际之中 3情感、态度与价值观 培养良好的观察、操作、想象、推理能力,感悟几何学的内涵 重、难点与关键 1重点:使学生理解证明的基本过程,掌握用综合法证明的格式 2难点:领会证明的分析思路,学会运用综合法证明的格式 3关键:突出三角形全等的判定方法这条主线,淡化对定
8、理的证明 教学建议 1注意使学生经历探索三角形性质及三角形全等的判定的过程在教学中鼓励学生观察、操作、推理,运用多种方式探索三角形有关性质 2注重创设具有现实性、趣味性和挑战性的情境,体现三角形的广泛应用 3注意直观操作与说理的结合,逐步培养学生有条理的思考和表达 课时划分 本单元共分成9课时 121 全等三角形 1课时 122 三角形全等的性质 5课时 123 角的平分线的性质 2课时 复习与交流 1课时12.1 全等三角形 教学内容 本节课主要介绍全等三角形的概念和性质 教学目标 1知识与技能 领会全等三角形对应边和对应角相等的有关概念 2过程与方法 经历探索全等三角形性质的过程,能在全等
9、三角形中正确找出对应边、对应角 3情感、态度与价值观 培养观察、操作、分析能力,体会全等三角形的应用价值 重、难点与关键 1重点:会确定全等三角形的对应元素 2难点:掌握找对应边、对应角的方法 3关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,两条对应边所夹的角是对应角 教具准备 四张大小一样的纸片、直尺、剪刀 教学方法 采用“直观感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识 教学过程 一、动手操作,导入课题 1先在其中一张纸上画出任意一个多边形,再用剪刀剪下,思考得到的图形有何特点? 2
10、重新在一张纸板上画出任意一个三角形,再用剪刀剪下,思考得到的图形有何特点? 【学生活动】动手操作、用脑思考、与同伴讨论,得出结论 【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形 学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心 【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合这样的两个图形叫做全等形,用“”表示 概念:能够完全重合的两个三角形叫做全等三角形 【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗? 【学生活动】动手操作,实践感知,得出
11、结论:两个三角形全等 【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边 【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点? 【交流讨论】通过同桌交流,实验得出下面结论: 1任意放置时,并不一定完全重合,只有当把相同的角旋转到一起时才能完全重合 2这时它们的三个顶点、三条边和三个内角分别重合了 3完全重合说明三条边对应相等,三个内角对应相等,对应顶点在相对应的位置 【教师活动】根据学生交流的情况,给予补充和语言上的规范 1概念:把两个全等的三
12、角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角2证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如果本图1112ABC和DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,记作ABCDBC【问题提出】课本图1111中,ABCDEF,对应边有什么关系?对应角呢? 【学生活动】经过观察得到下面性质: 1全等三角形对应边相等; 2全等三角形对应角相等 二、随堂练习,巩固深化 课本P4练习 【探研时空】1如图1所示,ACFDBE,E=F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流(AB=6) 2如图2所示,ABCAEC,B=3
13、0,ACB=85,求出AEC各内角的度数(AEC=30,EAC=65,ECA=85) 三、课堂总结,发展潜能 1什么叫做全等三角形? 2全等三角形具有哪些性质? 四、布置作业,专题突破 1课本P4习题111第1,2,3,4题 2选用课时作业设计 板书设计 把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习 疑难解析 由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三
14、角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角) 课时作业设计一、填空题1如图3所示,AOCBOD,A和B,C和D是对应角,那么对应边CO=_,AO=_,AC=_,对应角COA=_ 2如图4所示,把ABC绕A点旋转一定角度,得到ADE,那么对应边AB=_,AC=_,DE=_,对应角BAC=_,B=_3已知ABCDEF,AB=5,BC=4,AC=3,C=90,则DEF中,最小的边长为_,最大的角为_度二、选择题4如果ABCDEF,DEF的周长为13,DE=3,EF=4,则AC的长( ) A13 B3 C4 D65已知ABCABC,A=80,B=40,那
15、么C的度数为( ) A80 B40 C60 D120三、解答题6如图所示,ABCABC,C=25,BC=6cm,AC=4cm,你能得出ABC中哪些角的大小,哪些边的长度?7如图所示,已知ABCDEF,则AB与DE,AC与DF的位置有什么关系?说说你的理由四、情境思索8如图所示,一栅栏顶部是由全等的三角形组成的,其中AC=02m,BC=2AC,求BD的长五、聚焦中考9如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则AOC+DOB的度数为多少度?课时作业设计答案:一、1DO BO BD DOB 2AD AE BC DAE D 33 90二、4D 5C三、6C=25 BC=6cm AC=
16、4cm 7平行(理由略)四、8略五、918012.2.1三角形全等的判定(SSS) 教学内容 本节课主要内容是探索三角形全等的条件(SSS),及利用全等三角形进行证明 教学目标 1知识与技能 了解三角形的稳定性,会应用“边边边”判定两个三角形全等 2过程与方法 经历探索“边边边”判定全等三角形的过程,解决简单的问题 3情感、态度与价值观 培养有条理的思考和表达能力,形成良好的合作意识 重、难点与关键 1重点:掌握“边边边”判定两个三角形全等的方法 2难点:理解证明的基本过程,学会综合分析法 3关键:掌握图形特征,寻找适合条件的两个三角形 教具准备一块形状如图1所示的硬纸片,直尺,圆规 (1)
17、(2) 教学方法 采用“操作实验”的教学方法,让学生亲自动手,形成直观形象 教学过程 一、设疑求解,操作感知 【教师活动】(出示教具) 问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流【学生活动】观察,思考,回答教师的问题方法如下:可以将图1的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形如图2,剪下模板就可去割玻璃了 【理论认知】 如果ABCABC,那么它们的对应边相等,对应角相等反之,如果ABC与ABC满足三条边对应相等,三个角对应相等,即AB=AB,BC=BC,CA=CA,A=A,B=B,C
18、=C 这六个条件,就能保证ABCABC,从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等 信不信? 【作图验证】(用直尺和圆规) 先任意画出一个ABC,再画一个ABC,使AB=AB,BC=BC,CA=CA把画出的ABC剪下来,放在ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证(如课本图112-2所示) 画一个ABC,使AB=AB,AC=AC,BC=BC: 1画线段取BC=BC; 2分别以B、C为圆心,线段AB、AC为半径画弧,两弧交于点A; 3连接线段AB、AC 【教师活动】巡视、指导,引入课题:“上述的生活实例和尺
19、规作图的结果反映了什么规律?” 【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理 (1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”) (2)判断两个三角形全等的推理过程,叫做证明三角形全等 【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验 二、范例点击,应用所学【例1】如课本图1123所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证ABDACD(教师板书) 【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 上册 教案
限制150内