《初中三角函数公式大全.doc》由会员分享,可在线阅读,更多相关《初中三角函数公式大全.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角函数公式大全锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2 是sinA的平方 sin2(A) )三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2
2、asina辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B降幂公式sin2()=(1-cos(2)/2=versin(2)/2cos2()=(1+cos(2)/2=covers(2)/2tan2()=(1-cos(2)/(1+cos(2)推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1
3、-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina(3/2)²-sin²a=4sina(sin²60-sin²a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin(60+a)/2cos(6
4、0-a)/2*2sin(60-a)/2cos(60-a)/2=4sinasin(60+a)sin(60-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosacos²a-(3/2)²=4cosa(cos²a-cos²30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos(a+30)/2cos(a-30)/2*-2sin(a+30)/2sin(a-30)/2=-4cosasin(a+30)sin(a-30)=-4cosasin90-(60-a)sin-90+(60+a)=
5、-4cosacos(60-a)-cos(60+a)=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a)/2cos2(a/2)=(1+cos(a)/2tan(a/2)=(1-cos(a)/sin(a)=sin(a)/(1+cos(a)三角和sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(
6、+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积sin+sin = 2 sin(+)/2 cos(-)/2sin-sin = 2 cos(+)/2 sin(-)/2cos+cos = 2 cos(+)/2 cos(
7、-)/2cos-cos = -2 sin(+)/2 sin(-)/2tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinsin = cos(-)-cos(+) /2coscos = cos(+)+cos(-)/2sincos = sin(+)+sin(-)/2cossin = sin(+)-sin(-)/2诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sin
8、sin(/2+) = coscos(/2+) = -sinsin(-) = sincos(-) = -cossin(+) = -sincos(+) = -costanA= sinA/cosAtan(/2)cottan(/2)cottan()tantan()tan诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin=2tan(/2)/1+tan(/2)cos=1-tan(/2)/1+tan(/2)tan=2tan(/2)/1-tan(/2)其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)2=(csc)2证明下面两式,只需将一式,左右同除(si
9、n)2,第二个除(cos)2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及sin2()+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
限制150内