冀教版八年级上册数学 第16章 【教学设计】 线段的垂直平分线的性质.doc
《冀教版八年级上册数学 第16章 【教学设计】 线段的垂直平分线的性质.doc》由会员分享,可在线阅读,更多相关《冀教版八年级上册数学 第16章 【教学设计】 线段的垂直平分线的性质.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线段的垂直平分线的性质 一、学生知识状况分析学生对于掌握定理以及定理的证明并不存在多大困难,这是因为以前学习生活中的轴对称中学生已经有了一定的基础。二、教学任务分析学生已经对线段的垂直平分线有了初步的认识,本节课将进一步深入探索线段垂直平分线的性质和判定。同时,渗透证明一个图形上的每个点都具有某种性质的方法:只需在图形上任取一点作为代表。本节课目标位:1.证明线段垂直平分线的性质定里和判定定理2经历探索、猜测、证明的过程,进一步发展学生的推理证明能力丰富对几何图形的认识。3.通过小组活动,学会与人合作,并能与他人交流思维的过程和结果教学重点、难点重点是运用几何符号语言证明垂直平分线的性质定理及
2、其逆命题。难点是垂直平分线的性质定理在实际问题中的运用。三、教学过程分析本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:性质探索与证明;第三环节:逆向思维,探索判定;第四环节:巩固应用 ;第五环节:随堂练习;第六环节:课时小结第七环节:课后作业。第一环节:创设情境,引入新课教师用多媒体演示:如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的
3、一个性质:线段垂直平分线上的点到线段两个端点的距离相等所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成进一步提问:“你能用公理或学过的定理证明这一结论吗?”第二环节:性质探索与证明教师鼓励学生思考,想办法来解决此问题。通过讨论和思考,引导学生分析并写出已知、求证的内容。已知:如图,直线MNAB,垂足是C,且AC=BC,P是MN上的点求证:PA=PB分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等证明:MNAB,PCA=PCB=90AC=BC,PC=PC,PCAPCB(SAS) ;PA=PB(全等三角形的对应边相等)教师用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学设计 冀教版八年级上册数学 第16章 【教学设计】 线段的垂直平分线的性质 冀教版八 年级 上册 数学 16 教学 设计 线段 垂直平分线 性质
限制150内