高中数学 圆锥曲线题型总结.doc
《高中数学 圆锥曲线题型总结.doc》由会员分享,可在线阅读,更多相关《高中数学 圆锥曲线题型总结.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、直线和圆锥曲线常考ian锥曲线经题型运用的知识:1、中点坐标公式:,其中是点的中点坐标。2、弦长公式:若点在直线上,则,这是同点纵横坐标变换,是两大坐标变换技巧之一,或者。3、两条直线垂直:则两条直线垂直,则直线所在的向量4、韦达定理:若一元二次方程有两个不同的根,则。常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线与椭圆始终有交点,求的取值范围解:根据直线的方程可知,直线恒过定点(0,1),椭圆过动点,如果直线和椭圆始终有交点,则,即。规律提示:通过直线的代数形式,可以看出直线的特点:题型二:弦的垂直平分线问题例题2、过点T(-1,0)作直线与曲线N :交于A、B
2、两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。解:依题意知,直线的斜率存在,且不等于0。设直线,。由消y整理,得 由直线和抛物线交于两点,得即 由韦达定理,得:。则线段AB的中点为。线段的垂直平分线方程为:令y=0,得,则为正三角形,到直线AB的距离d为。解得满足式此时。题型三:动弦过定点的问题例题3、已知椭圆C:的离心率为,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。(I)求椭圆的方程;(II)若直线与x轴交于点T,点P为直线上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论解
3、:(I)由已知椭圆C的离心率,,则得。从而椭圆的方程为(II)设,直线的斜率为,则直线的方程为,由消y整理得是方程的两个根,则,即点M的坐标为,同理,设直线A2N的斜率为k2,则得点N的坐标为,直线MN的方程为:,令y=0,得,将点M、N的坐标代入,化简后得:又,椭圆的焦点为,即故当时,MN过椭圆的焦点。题型四:过已知曲线上定点的弦的问题例题4、已知点A、B、C是椭圆E: 上的三点,其中点A是椭圆的右顶点,直线BC过椭圆的中心O,且,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线对称,求直线PQ的斜率。 解:(I) ,且BC过椭圆的中心
4、O又点C的坐标为。A是椭圆的右顶点,则椭圆方程为:将点C代入方程,得,椭圆E的方程为(II) 直线PC与直线QC关于直线对称,设直线PC的斜率为,则直线QC的斜率为,从而直线PC的方程为:,即,由消y,整理得:是方程的一个根,即同理可得:则直线PQ的斜率为定值。题型五:共线向量问题例题5、设过点D(0,3)的直线交曲线M:于P、Q两点,且,求实数的取值范围。解:设P(x1,y1),Q(x2,y2),(x1,y1-3)=(x2,y2-3)即方法一:方程组消元法又P、Q是椭圆+=1上的点消去x2,可得即y2=又2y22,22解之得:则实数的取值范围是。方法二:判别式法、韦达定理法、配凑法设直线PQ
5、的方程为:,由消y整理后,得P、Q是曲线M上的两点即 由韦达定理得:即 由得,代入,整理得,解之得当直线PQ的斜率不存在,即时,易知或。总之实数的取值范围是。题型六:面积问题例题6、已知椭圆C:(ab0)的离心率为短轴一个端点到右焦点的距离为。()求椭圆C的方程;()设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求AOB面积的最大值。解:()设椭圆的半焦距为,依题意,所求椭圆方程为。()设,。(1)当轴时,。(2)当与轴不垂直时,设直线的方程为。由已知,得。把代入椭圆方程,整理得,。当且仅当,即时等号成立。当时,综上所述。当最大时,面积取最大值。题型七:弦或弦长为定值问题例题7、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 圆锥曲线题型总结 圆锥曲线 题型 总结
限制150内