椭圆知识点归纳总结和经典例题.doc
《椭圆知识点归纳总结和经典例题.doc》由会员分享,可在线阅读,更多相关《椭圆知识点归纳总结和经典例题.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流椭圆知识点归纳总结和经典例题【精品文档】第 12 页椭圆的基本知识 1椭圆的定义:把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c) . 2.椭圆的标准方程:(0) (0)焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m0,n0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法解: (相关点法)设点M(x, y), 点P(x0, y0), 则xx0, y 得x0x, y02y.x02y024, 得 x2(2y
2、)24, 即所以点M的轨迹是一个椭圆. 4.范围. x2a2,y2b2,|x|a,|y|b椭圆位于直线xa和yb围成的矩形里5.椭圆的对称性椭圆是关于y轴、x轴、原点都是对称的坐标轴是椭圆的对称轴原点是椭圆的对称中心椭圆的对称中心叫做椭圆的中心6.顶点 只须令x0,得yb,点B1(0,b)、B2(0, b)是椭圆和y轴的两个交点;令y0,得xa,点A1(a,0)、A2(a,0)是椭圆和x轴的两个交点椭圆有四个顶点:A1(a, 0)、A2(a, 0)、B1(0, b)、B2(0, b)椭圆和它的对称轴的四个交点叫椭圆的顶点线段A1A2、B1B2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴
3、的长等于2b.a叫做椭圆的长半轴长b叫做椭圆的短半轴长|B1F1|B1F2|B2F1|B2F2|a在RtOB2F2中,|OF2|2|B2F2|2|OB2|2,即c2a2b27.椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率对于第一类性质,只要的有关性质中横坐标x和纵坐标y互换,就可以得出的有关性质。总结如下:几点说明:(1)长轴:线段,长为;短轴:线段,长为;焦点在长轴上。(2)对于离心率e,因为ac0,所以0e1,离心率反映了椭圆的扁平程度。由于,所以越趋近于1,越趋近于,椭圆越扁平;越
4、趋近于0,越趋近于,椭圆越圆。(3)观察下图,所以,所以椭圆的离心率e = cosOF2B28.直线与椭圆: 直线:(、不同时为0) 椭圆:那么如何来判断直线和椭圆的位置关系呢?将两方程联立得方程组,通过方程组的解的个数来判断直线和椭圆交点的情况。方法如下: 消去得到关于的一元二次方程,化简后形式如下 (1)当时,方程组有两组解,故直线与椭圆有两个交点; (2)当时,方程组有一解,直线与椭圆有一个公共点(相切); (3)当时,方程组无解,直线和椭圆没有公共点。 注:当直线与椭圆有两个公共点时,设其坐标为,那么线段的长度(即弦长)为,设直线的斜率为,可得:,然后我们可通过求出方程的根或用韦达定理
5、求出。椭圆典型例题例1 已知椭圆的一个焦点为(0,2)求的值分析:把椭圆的方程化为标准方程,由,根据关系可求出的值解:方程变形为因为焦点在轴上,所以,解得又,所以,适合故例2 已知椭圆的中心在原点,且经过点,求椭圆的标准方程分析:因椭圆的中心在原点,故其标准方程有两种情况根据题设条件,运用待定系数法,求出参数和(或和)的值,即可求得椭圆的标准方程解:当焦点在轴上时,设其方程为由椭圆过点,知又,代入得,故椭圆的方程为当焦点在轴上时,设其方程为由椭圆过点,知又,联立解得,故椭圆的方程为例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹分析:(1)由已知可得,再利用椭圆定义求解
6、(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程解: (1)以所在的直线为轴,中点为原点建立直角坐标系设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点因,有,故其方程为(2)设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程解:设两焦点为、,且,从椭圆定义知即从知垂直焦点所在的对称轴,所以在中,可求出,从而所求椭圆方程为或例5 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角的两邻
7、边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦定理知: 由椭圆定义知: ,则得 故 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法例7 已知椭圆(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 知识点 归纳 总结 经典 例题
限制150内