咸宁功率器件项目实施方案_模板范本.docx
《咸宁功率器件项目实施方案_模板范本.docx》由会员分享,可在线阅读,更多相关《咸宁功率器件项目实施方案_模板范本.docx(120页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/咸宁功率器件项目实施方案咸宁功率器件项目实施方案xx有限责任公司目录第一章 背景、必要性分析9一、 功率MOSFET的行业发展趋势9二、 MOSFET器件概述10三、 功率器件应用发展机遇15四、 强化系统观念,统筹发展与安全19五、 加强创新引领,不断增强发展动能20六、 项目实施的必要性20第二章 项目基本情况22一、 项目概述22二、 项目提出的理由23三、 项目总投资及资金构成25四、 资金筹措方案25五、 项目预期经济效益规划目标25六、 项目建设进度规划26七、 环境影响26八、 报告编制依据和原则26九、 研究范围27十、 研究结论28十一、 主要经济指标一览表28主要
2、经济指标一览表28第三章 行业、市场分析31一、 全球半导体行业发展概况31二、 中国半导体行业发展概况31三、 功率半导体市场规模与竞争格局32第四章 项目选址34一、 项目选址原则34二、 建设区基本情况34三、 深化对外开放,融入“双循环”新格局36四、 项目选址综合评价37第五章 建筑技术方案说明38一、 项目工程设计总体要求38二、 建设方案38三、 建筑工程建设指标39建筑工程投资一览表39第六章 建设方案与产品规划41一、 建设规模及主要建设内容41二、 产品规划方案及生产纲领41产品规划方案一览表41第七章 运营管理模式44一、 公司经营宗旨44二、 公司的目标、主要职责44三
3、、 各部门职责及权限45四、 财务会计制度49第八章 SWOT分析说明52一、 优势分析(S)52二、 劣势分析(W)54三、 机会分析(O)54四、 威胁分析(T)55第九章 发展规划分析63一、 公司发展规划63二、 保障措施64第十章 工艺技术设计及设备选型方案67一、 企业技术研发分析67二、 项目技术工艺分析69三、 质量管理70四、 设备选型方案71主要设备购置一览表72第十一章 劳动安全分析73一、 编制依据73二、 防范措施76三、 预期效果评价80第十二章 原辅材料供应及成品管理81一、 项目建设期原辅材料供应情况81二、 项目运营期原辅材料供应及质量管理81第十三章 投资计
4、划方案82一、 投资估算的编制说明82二、 建设投资估算82建设投资估算表84三、 建设期利息84建设期利息估算表85四、 流动资金86流动资金估算表86五、 项目总投资87总投资及构成一览表87六、 资金筹措与投资计划88项目投资计划与资金筹措一览表89第十四章 项目经济效益91一、 基本假设及基础参数选取91二、 经济评价财务测算91营业收入、税金及附加和增值税估算表91综合总成本费用估算表93利润及利润分配表95三、 项目盈利能力分析96项目投资现金流量表97四、 财务生存能力分析99五、 偿债能力分析99借款还本付息计划表100六、 经济评价结论101第十五章 项目风险评估102一、
5、项目风险分析102二、 项目风险对策104第十六章 总结106第十七章 附表附件108营业收入、税金及附加和增值税估算表108综合总成本费用估算表108固定资产折旧费估算表109无形资产和其他资产摊销估算表110利润及利润分配表111项目投资现金流量表112借款还本付息计划表113建设投资估算表114建设投资估算表114建设期利息估算表115固定资产投资估算表116流动资金估算表117总投资及构成一览表118项目投资计划与资金筹措一览表119报告说明2020年12月15日在2021中国信通院ICT+深度观察报告会上,工业和信息化部发言人指出,中国已累计建成5G基站71.8万个,推动共建共享5G
6、基站33万个。2020年12月28日,工信部部长肖亚庆在2021年全国工业和信息化工作会议上表示,2021年将有序推进5G网络建设及应用,加快主要城市5G覆盖,推进共建共享,新建5G基站60万个以上。根据谨慎财务估算,项目总投资17883.53万元,其中:建设投资14960.34万元,占项目总投资的83.65%;建设期利息175.70万元,占项目总投资的0.98%;流动资金2747.49万元,占项目总投资的15.36%。项目正常运营每年营业收入30200.00万元,综合总成本费用25542.39万元,净利润3391.96万元,财务内部收益率12.83%,财务净现值2279.72万元,全部投资回
7、收期6.68年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。该项目符合国家有关政策,建设有着较好的社会效益,建设单位为此做了大量工作,建议各有关部门给予大力支持,使其早日建成发挥效益。本报告为模板参考范文,不作为投资建议,仅供参考。报告产业背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告可用于学习交流或模板参考应用。第一章 背景、必要性分析一、 功率MOSFET的行业发展趋势1、工艺进步、器件结构改进所带来的变化采用新型器件结构的高性能MOSFET功率器件可以实现更好的性能,从而导致采用传统技术的功率
8、器件的市场空间被升级替代。造成该等趋势的主要原因是高性能功率器件的生产工艺不断进行技术演进,当采用新技术的高性能MOSFET功率器件生产工艺演进到成熟稳定的阶段时,就会对现有的功率MOSFET进行替代。同时,随着各个应用领域对性能和效率的要求不断提升,也需要采用更高性能的功率器件以实现产品升级。因此,高性能MOSFET功率器件会不断扩大其应用范围,实现市场的普及。未来的5年中会出现新技术不断扩大市场应用领域的趋势。具体而言,沟槽MOSFET将替代部分平面MOSFET;屏蔽栅MOSFET将进一步替代沟槽MOSFET;超级结MOSFET将在高压领域替代更多传统的VDMOS。第三代半导体材料主要为碳
9、化硅和氮化镓,具有禁带宽度大、电子迁移率高、热导率高的特点,在高温、高压、高功率和高频的领域有机会取代部分硅材料。首先,由于新能源汽车、5G等新技术的应用及需求迅速增加,第三代半导体的产业化变得更加迫切。得益于SiCMOSFET在高温下更好的表现,SiCMOSFET在汽车电控中将逐步对硅基IGBT模块进行替代。根据Yole的数据,2019年应用在新能源汽车的SiC器件市场规模为2.25亿美元,预计到2025年将增长至15.53亿美元,复合增长率为38%。第三代半导体材料仍然处于产业化起步阶段,国内已发布多个政策积极推进第三代半导体行业的发展,例如2019年国务院发布长江三角洲区域一体化发展规划
10、纲要,提出要加快培育一批第三代半导体企业。2、功率器件集成化趋势除了MOSFET功率器件在结构及工艺方面的优化外,终端领域的高功率密度需求也带动了功率器件的模块化和集成化。在中大功率应用场景中,客户更倾向于使用大功率模块。由于大功率模块需要多元件电气互联,同时要考虑高温失效和散热问题,其封装工艺和结构更复杂;在小功率应用场景中,功率器件被封装到嵌入式封装模块中来提高集成度从而减小整体方案的体积。目前,工业领域仍是功率模块的主要应用领域。随着新能源汽车、5G技术的兴起,功率器件模块化趋势将愈发显著。根据Omdia预测,2020-2024年分立器件市场增速为2.8%,而功率模块市场增速为9.2%,
11、高于分立器件市场增速。二、 MOSFET器件概述1、MOSFET器件MOSFET全称金属氧化物半导体场效应管,是一种可以广泛使用在模拟与数字电路的场效应晶体管。MOSFET器件具有高频、驱动简单、抗击穿性好等特点,应用范围涵盖通信、消费电子、汽车电子、工业控制、计算机及外设设备、电源管理等多个领域。2019年全球MOSFET器件市场需求规模达到84.20亿美元,受疫情影响,2020预计市场规模下降至73.88亿美元,但预计未来全球MOSFET器件市场将继续保持平稳回增,2024年市场规模有望恢复至77.02亿美元。2019年全球MOSFET器件市场中,英飞凌排名第一,市场占有率达到24.79%
12、,前十大公司市场占有率达到74.42%。中国本土企业中,闻泰收购的安世半导体、中国本土成长起来的华润微电子、扬杰科技进入前十,分别占比3.93%、3.09%和1.80%。根据Omdia的统计,2019年我国MOSFET器件市场规模为33.42亿美元,2017年-2019年复合年均增长率为7.89%,高于功率半导体行业平均的增速。在下游的应用领域中,消费电子、通信、工业控制、汽车电子占据了主要的市场份额,其中消费电子与汽车电子占比最高。在消费电子领域,主板、显卡的升级换代、快充、Type-C接口的持续渗透持续带动MOSFET器件的市场需求,在汽车电子领域,MOSFET器件在电动马达辅助驱动、电动
13、助力转向及电机驱动等动力控制系统,以及电池管理系统等功率变换模块领域均发挥重要作用,有着广阔的应用市场及发展前景。2019年,中国MOSFET器件市场中,英飞凌排名第一,市占率达到24.95%,前十大公司市占率达到74.54%。中国本土企业中,华润微电子、扬杰科技、闻泰收购的安世半导体和吉林华微电子进入前十,分别占比4.79%、3.34%、3.28%和2.93%。2、超级结MOSFET继二十世纪五十年代起,真空管逐渐被固体器件替代,以硅材料为基础的功率器件成为研究主流。二十世纪七十年代,用二氧化硅改善双极性晶体管性能的功率MOSFET开始出现。随着功率器件在消费、医药、工业、运输业中的广泛应用
14、,能够降低成本且提高系统效率的高性能功率器件的需求日渐提升。由于MOSFET的导通电阻随着击穿电压的上升而迅速增大,因此在高压领域,普通MOSFET导通阻抗大,难以满足实际应用需要,多次注入的超级结和深槽的超级结MOSFET结构由此被提出。超级结MOSFET全称超级结型MOSFET,是MOSFET结构设计的先进技术。该结构具备更好的导通特性,可以工作于更大的电流条件。通常情况下,高压VDMOS采用平面栅结构。由于击穿电压与N-外延层厚度成正比,因此要获得更高的击穿电压需要更厚尺寸的外延层和更淡的掺杂浓度,导致其导通电阻和损耗随着外延层厚度增加而急剧增大,额定电流同步降低。超级结MOSFET的漂
15、移区具有多个P柱,可以补偿N区中的电荷。在器件关断时,N型外延层和P柱相互耗尽,可以在N型外延层掺杂浓度比高压VDMOS对应的N外延浓度高很多时也可以有较高的耐受电压;在器件导通时,N掺杂区作为导通时的电流通路。由此,超级结结构兼具高耐压特性和低电阻特性。由于超级结MOSFET的导通电阻随着击穿电压的增加而线性增加,对于相同的击穿电压和管芯尺寸,其导通电阻远小于普通高压VDMOS,因此常用于高能效和高功率密度的快速开关应用中。相较于普通硅基MOSFET功率器件,高压超级结MOSFET功率器件系更先进、更适用于大电流环境下的高性能功率器件。随着5G通讯、汽车电动化、高性能充电器等应用领域的发展,
16、高压超级结MOSFET将拥有更快的市场增速。根据Omdia和Yole的统计及预测,2020年与2025年硅基MOSFET的晶圆月出货量(折合8英寸)分别为59.7万片与73.9万片,年均复合增长为4.3%。其中,超级结MOSFET由23.8万片增长至35.1万片,年均复合增长率为8.1%,增长速度约为普通硅基MOSFET功率器件的两倍左右。3、IGBT器件概述IGBT全称绝缘栅双极晶体管,是由双极型三极管BJT和MOSFET组成的复合全控型电压驱动式功率器件。IGBT具有电导调制能力,相对于MOSFET和双极晶体管具有较强的正向电流传导密度和低通态压降。IGBT被广泛应用于逆变器、变频器、开关
17、电源、照明电路、牵引传动等领域。随着新能源汽车、通信、计算机、消费电子、汽车电子、航空航天、国防军工等应用需求增长,全球IGBT分立器件市场将持续扩大。根据Omdia的统计,2019年市场规模为16.03亿美元,2017-2019年复合年均增长率为11.73%,2024年市场规模有望达到16.82亿美元。2019年全球IGBT分立器件领域中,英飞凌销售额排名第一,市占率高达30.22%,前十大公司合计占比达到75.42%,中国厂商中,吉林华微电子进入前十,市占率为2.41%。根据Omdia的统计,2017年我国IGBT分立器件市场规模为4.26亿美元,2019年为6.05亿美元,对应复合年均增
18、长率为19.17%。IGBT是国家16个重大技术突破专项中的重点扶持项目,被称为电力电子行业里的“CPU”。在中低电压领域,IGBT广泛应用于新能源汽车和白色家电中;在1700V以上的高电压领域,IGBT广泛应用于轨道交通、清洁发电、智能电网等重要领域。2019年,中国IGBT分立器件市场中英飞凌排名第一,市占率为24.28%,前十大公司合计占比达到69.57%,中国厂商吉林华微电子、华润微电子进入前十,市占率分别为4.71%、3.65%。我国IGBT产业起步较晚,未来进口替代空间巨大,目前在部分领域已经实现了技术突破和国产化。此外,在新能源汽车领域,IGBT是电控系统和直流充电桩的核心器件,
19、随着未来新能源汽车等新兴市场的快速发展,IGBT产业将迎来黄金发展期。三、 功率器件应用发展机遇受益于新能源汽车和5G产业的高速发展,充电桩、5G通讯基站及车规级等市场对于高性能功率器件的需求将不断增加,高压超级结MOSFET为代表的高性能产品在功率器件领域的市场份额以及重要性将不断提升。1、充电桩(1)发展机遇2020年,充电桩被列入国家七大“新基建”领域之一。2020年5月两会期间,政府工作报告中强调“建设充电桩,推广新能源汽车,激发新消费需求、助力产业升级”。公安部交通管理局公布数据显示,截至2020年6月新能源汽车保有量有417万辆,与2019年年底相比增加36万辆,增长率达到9.45
20、%。伴随新能源汽车保有量的高速增长,新能源充电桩作为配套基础设施亦实现了快速增长,截止2019年12月,全国充电基础设施累计数量为121.9万个,其中公共桩51.6万个,私人桩70.3万个,充电场站建设数量达到3.6万座。公共充电桩由政府机关等具有公共服务性质的机构置办,服务对象面向所有电动汽车车主。2015年至2019年,全国公共充电桩的数量由5.8万个增长至51.6万个,复合年增长率达到了72.9%。近几年来,我国充电站同样有快速发展,充电站保有量已由2015年1,069座增加到2019年的35,849座,复合年增长率为140.64%。充电站密度越来越高,电动汽车车主充电便利性也得到了大幅
21、改善。“新基建”对充电桩的建设驱动主要在以下几方面:驱动公共桩建设提质且区域均衡发展,直流桩占比将持续提升,省份间差异有望缩小。推动优质场站建设,完善配套设施申报流程办理。推动小区、商场等停车位充电桩建设。促进对运营商的建设与充电运营流程支持。(2)超级结MOSFET功率器件迎来快速发展机遇充电桩按充电能力分类,以处理不同的用例场景。公共充电桩包括交流桩和直流桩,交流充电桩需要借助车载充电机,充电速度较慢,一辆纯电动汽车(普通电池容量)完全放电后通过交流充电桩充满通常需要8个小时。直流充电桩俗称“快充”,固定安装在电动汽车外,与交流电网连接,通常仅需要不到2-3小时即可将一辆纯电动汽车电池充满
22、。目前我国公共交流桩主要分为单相交流桩和三相交流桩。单相交流桩的建设更广泛,对应的充电功率分为3.5kW和7kW,其中,公共交流桩充电功率以7kW为主。三相交流桩的主要功率为21kW、40kW和80kW,但整体数量较少。从2016-2019年新增公共交流桩平均功率来看,平均功率基本保持在8.7kW上下。高端三相交流桩主要使用三相维也纳输入整流器(PowerFactorCorrection,“PFC”),其中部分功率器件的领先解决方案使用了超级结MOSFET。公共直流充电桩一般输入电压为380V。根据2016-2019年新增公共直流桩平均功率数据,公共直流桩充电功率在逐渐提高。其中2017年上涨
23、幅度最大,从69.23kW提高到91.65kW,而到了2019年虽然维持上涨趋势,但由于目前市场的公共直流桩充电功率已经基本上能够满足电动汽车的充电需求,故2019年新增公共直流桩平均充电功率小幅提高,达到115.76kW。预计未来新增的公共直流桩充电功率普遍在120kW左右。在公共直流充电桩所需的工作功率和电流要求下,其采用的功率器件以高压MOSFET为主。超级结MOSFET因其更低的导通损耗和开关损耗、高可靠性、高功率密度成为主流的充电桩功率器件应用产品,具体应用于充电桩的功率因数校正(PowerFactorCorrection,“PFC”)、直流-直流变换器以及辅助电源模块等。超级结MO
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 咸宁 功率 器件 项目 实施方案 模板 范本
限制150内