新浙教版九年级下册知识点及典型例题-8页word资料.doc
《新浙教版九年级下册知识点及典型例题-8页word资料.doc》由会员分享,可在线阅读,更多相关《新浙教版九年级下册知识点及典型例题-8页word资料.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流新浙教版九年级下册知识点及典型例题【精品文档】第 8 页九年级下册第一章 解直角三角形一、锐角三角函数(一)、基础知识1锐角三角函数定义在直角三角形ABC中,C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是: (1) 正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A = , (2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A = ,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即 tan A
2、= ,这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角A必须在直角三角形中,且C=900; (2)在直角三角形 ABC 中,每条边均用所对角的相应的小写字母表示。 否则,不存在上述关系2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。3、锐角三角函数关系:(1)平方关系: sin2A + cos2A = 1;4、互为余角的两个三角函数关系若A+B=90,则sinA=cosB,cosA=sinB.5、特殊角的三角函数: 00300450600sin0cos1tan01二、 勾股定理2、 勾股定理的概念:直角三角形斜边的平方等于两
3、直角边的平方和。3、 勾股定理的数学表达;若三角形ABC为直角三角形,A,B,C的对边分别为a,b,c,且C=90,则,反之,已知a,b,c为三角形ABC的边。若,则三角形ABC为直角三角形。典例:1. 在RtABC中,各边的长度都扩大2倍,那么锐角A的正弦、余弦 ()A、都扩大2倍 B、都扩大4倍 C、没有变化 D、都缩小一半2.在RtABC中,C=90,sinA=,则cosB的值等于( )A B. C. D. 3.在正方形网格中,的位置如图所示,则的值为( )ABCD4.在RtABC中,C=90,A=15,AB的垂直平分线与AC相交于M点,则CM:MB等于( )A、2: B、:2 C、:1
4、 D、1:5.身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝是拉直的),则三人所放的风筝中( )同学甲乙丙放出风筝线长100m100m90m线与地面夹角404560A、甲的最高 B、丙的最高 C、 乙的最低 D、丙的最低东6.如图,一渔船上的渔民在A处看见灯塔M在北偏东60O方向,这艘渔船以28km/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15O方向,此时,灯塔M与渔船的距离是() 7、= 8、锐角A满足2 sin(A-15)=,则A= .9、已知tan B=,则sin= .10、如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼
5、房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60,在点A处看这栋电梯楼底部点C处的俯角为45,两栋楼之间的距离为30m,则电梯楼的高BC为_米(保留根号)ABCDA11.如图,已知直线,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则 DCBA12.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为,底部B点的俯角为,小华在五楼找到一点D,利用三角板测得A点的俯角为(如图).若已知CD为10米,请求出雕塑AB的高度(结果精确到0.1米,参考数据)13.如图,某天然气
6、公司的主输气管道从A市的东偏北30方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长.14.如图,在梯形ABCD中,ADBC,BDDC,C60,AD4,BC6,求AB的长ABCD15、某兴趣小组用高为1.2米的仪器测量建筑物CD的高度如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为测得ACDBEFGA,B之间的距离为4米,试求建筑物CD的高度16、一
7、副直角三角板如图放置,点C在FD的延长线上,ABCF,F=ACB=90, E=45,A=60,AC=10,试求CD的长17、综合实践课上,小明所在小组要测量护城河的宽度。如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得=36,然后沿河岸走50米到达N点,测得=72。请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字).(参考数据:sin 360.59,cos 360.81,tan360.73,sin 720.95,cos 720.31,tan723.08) 第二章 直线与圆的位置关系直线与圆的位置关系无交
8、点; 有一个交点;有两个交点;切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可直线和圆位置关系的判定:依据定义 依据圆心到直线距离d与圆的半径r的数量关系圆的切线的判定:(5) 定义依据d=r用判定定理圆的切线证明的两种情况:连半径,证垂直;作垂直,证半径。(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。切线长定理切线长定理:从圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新浙教版 九年级 下册 知识点 典型 例题 word 资料
限制150内