最新IGBT升降压斩波电路设计.docx
《最新IGBT升降压斩波电路设计.docx》由会员分享,可在线阅读,更多相关《最新IGBT升降压斩波电路设计.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品资料IGBT升降压斩波电路设计.电力电子技术课程设计报告课题名称 IGBT升降压斩波电路设计 专业班级 学 号 学生姓名 指导教师 指导教师职称 评 分 完成日期:2015年1月13日摘 要直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 。直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路
2、中同时实现升压和降压,简化了电路结构。而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。本文首先比较了两种具有升降压功能的DCDC变换电路,具体地分析了两种DCDC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DCDC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。关键词:直流斩波; 升降压; IGBT; 全控型目录1 设计任务要求1.1 设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V; (2)输出功率:
3、300W (3)开关频率5KHZ (4)占空比10%-50% (5) 输出电压脉率:小于10%1.2 设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。2方案选择2.1方案一该DCDC变换器为前后级串联结构,前级是由1T、3T、1D、2D、L、C、1R、2R构成降压变换电路,后级是由2T、2D、L、C构成升压变换电路,其中2D、L、C均出现在前、后级变电 路中。采用PWM 方
4、式控制两个主开关管3T、2T存在一定的困难,因为它们的控制端不共地。为了实现两路控制信号共地,也只能选用功率晶体管。为此增加辅助开关管1T,且3T由NPN型改为PNP型,显然1T、2T是共地的,1T、3T是同步开关的,这就实现了两路控制信号的共地。这样,原本通过控制3T、2T来控制电路的工作状态,现在是通过1T、2T来控制,1T称为降压斩波辅助开关,2T称为升压斩波主开关、3T称为降压斩波电路。其电路图如图2.1所示:图2-1原理图2.2方案二该变换器的结构是运用了全控型器件IGBT,其工作原理是:当V导通时,电源E经V向L供电使其贮能,此时电流为i1 ,同时C维持输出电压恒定并向负载R供电。
5、V关断时,L的能量向负载释放, 电流为i2 ,负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性 斩波电路。电路图如图2.2。(加书上原理图)图2-2原理图方案比较:方案一虽然实现了升降压,但是利用开关控制升降压的变换,而在方案二中直接采用全控型器件IGBT,利用IGBT的通断控制升降压的变换,电路比较简单,而且容易操作。因此,在设计中我们选择了方案二来实现升降压斩波控制。3 电路设计3.1 主电路设计我们最终采用的主电路图是第二种方案。图3-1 主电路 设电路中电感L很大,电容C也很大,使得电感电流iL和电容电压即负载电压uO基本为恒值。 该电路的基本工作原理是:当可控开关V处于
6、通态时,电源E经V向电感L供电使其储存能量,此时电流为il,同时C维持输出电压恒定并向负载R供电。同时,电容C维持输出电压基本恒定并向负载R供电。之后使得V关断,L的能量向负载释放,电流为i2,负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即 0TULdt=0 (3-1)当V处于通态期间,uL=ud;而当V处于断态期间,uL=-uo。于是: Udton=Udtoff (3-2)所以输出电压为:Uo=tontoffUd=tonT-tonUd=1-Ud (3-3)当输出端电压恒定且电流连续时,电感电流连续的临界条件:
7、Lc=R2Dc(1-Dc)2Ts (3-4)连续模式时的电容值: C=VoDcTsRUo=IoDcTsUo (3-5)其中纹波电压为U0,周期为Ts。负载电阻 R=PoUO2 (3-6)其中 Po为输出功率根据设计要求,开关频率5KHZ,则开关周期时间为0.2ms。另设电压脉率为10%,作为仿真时电感电阻取值时的依据。3.2 驱动电路设计由于IGBT是全控型器件,这给了我们利用“软件+驱动电路”的方法去实现对IGBT的开通和关断。通过对PWM信号的调制,实现对IGBT通断的控制。控制框图如下:图3-2 驱动电路控制框图在这里,我利用单片机写程序输出PWM信号。这里的程序可以通过独立按键很好的调
8、整占空比的大小。PWM控制程序如附录1所示。软件流程图如下图3-3 软件流程图51单片机作为一款简单有很廉价的控制芯片,在这里被用来作为控制PWM信号的产生和输出,我们采用了Atmel公司生产的AT89C51单片机。其工作频率为12MHZ,我们通过定时器中断的方式来输出周期为0.02ms的PWM波。图3-4 AT89C51芯片模型IGBT为电压驱动型器件,因而需要专用的混合集成驱动器,这里我们采用三菱公司生产的M57962驱动模块。其技术指标如下:特点: 单管大功率IGBT模块驱动器。M57962的改进型,管脚与M57962完全兼容,缺省参数也基本相同,可以直接代换。可按默认值直接使用,也可根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 IGBT 升降 压斩波 电路设计
限制150内