2019-2020学年高中数学《2、3.3直线与平面垂直的性质》教案-新人教A版必修2.doc
《2019-2020学年高中数学《2、3.3直线与平面垂直的性质》教案-新人教A版必修2.doc》由会员分享,可在线阅读,更多相关《2019-2020学年高中数学《2、3.3直线与平面垂直的性质》教案-新人教A版必修2.doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020学年高中数学2、3.3直线与平面垂直的性质教案 新人教A版必修2一、教学目标1、知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。2、过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;(2)性质定理的推理论证。3、情态与价值通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。二、教学重点、难点两个性质定理的证明。三、学法与用具(1)学法:直观感知、操作确认,猜想与证明。(2)用具:
2、长方体模型。四、教学设计(一)创设情景,揭示课题 问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢?让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。(自然进入课题内容)(二)研探新知1、操作确认观察长方体模型中四条侧棱与同一个底面的位置关系。如图2.34,在长方体ABCDA1B1C1D1中,棱AA1、BB1、CC1、DD1所在直线都垂直于平面ABCD,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a 、b、那么直线a、b一定平行吗?(一定)我们能否证明这一事实的正确性呢?C1D1ab A1B1DCA
3、B图2.3-4 图2.3-52、推理证明引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法反证法, 然后师生互动共同完成该推理过程 ,最后归纳得出:垂直于同一个平面的两条直线平行。(三)应用巩固 例子:课本P.74例4做法:教师给出问题,学生思考探究、判断并说理由,教师最后评议。(四)类比拓展,研探新知 类比上面定理:若在两个平面互相垂直的条件下,又会得出怎样的结论呢?例如:如何在黑板面上画一条与地面垂直的直线?引导学生观察教室相邻两面墙的交线,容易发现该交线与地面垂直,这时,只要在黑板上画出一条与这交线平行的直线,则所画直线必与地面垂直。然后师生互动,共同完成性质定理的确认与证明,并归纳性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。(五)巩固深化、发展思维 思考1、设平面平面,点P在平面内,过点P作平面的垂线a,直线a与平面具有什么位置关系?(答:直线a必在平面内)思考2、已知平面、和直线a,若,a,a ,则直线a与平面具有什么位置关系?(六)归纳小结,课后巩固小结:(1)请归纳一下本节学习了什么性质定理,其内容各是什么? (2)类比两个性质定理,你发现它们之间有何联系?作业:(1)求证:两条异面直线不能同时和一个平面垂直; (2)求证:三个两两垂直的平面的交线两两垂直。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2、3.3直线与平面垂直的性质 2019 2020 学年 高中数学 3.3 直线 平面 垂直 性质 教案 新人 必修 doc
限制150内