3[1]34简单的线性规划问题(实际应用).ppt
《3[1]34简单的线性规划问题(实际应用).ppt》由会员分享,可在线阅读,更多相关《3[1]34简单的线性规划问题(实际应用).ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.3.3简单的线性规划问题简单的线性规划问题 实际应用实际应用5x+4y=202x+3y=12线性目标函数),(M720712Z的最大值为的最大值为44已知实数已知实数x,y满足下列条件满足下列条件:5x+4y 202x+3y 12x 0y0求求z=9x+10y的最大值的最大值.最优解可行域9x+10y=0想一想想一想: :线性约束条件 01 2345 6123456xy代数问题代数问题(线性约束条件线性约束条件)图解法图解法转化转化线性约线性约束条件束条件可行域可行域转化转化线性目线性目标函数标函数Z=Ax+By一组平行线一组平行线B BZ Zx xy y 转化转化最优解最优解寻找平行线组
2、寻找平行线组的纵截距的纵截距 最值最值 四个步骤:四个步骤:1、画画4、答答3、移移2、作作三个转化三个转化一一. .复习复习转化转化转化转化转化转化四个步骤四个步骤:1。画画(画可行域)(画可行域)三个转化三个转化4。答答(求出点的坐标,并转化为最优解)(求出点的坐标,并转化为最优解)3。移移(平移直线(平移直线L 。寻找使纵截距取得最值时的点)。寻找使纵截距取得最值时的点)2。作作(作(作z=Ax+By=0时的直线时的直线L 。)。)图解法图解法想一想想一想( (结论结论): ):线性约束条件线性约束条件可行域可行域线性目标函数线性目标函数Z=Ax+By一组平行线一组平行线BZxy最优解最
3、优解寻找平行线组的寻找平行线组的 最大(小)纵截距最大(小)纵截距给定一定量的给定一定量的人力人力.物力物力,资金等资源资金等资源完成的任务量最大完成的任务量最大经济效益最高经济效益最高给定一项任务给定一项任务所耗的人力所耗的人力.物力资源最小物力资源最小降低成本降低成本获取最大的利润获取最大的利润精打细算精打细算最优方案最优方案统筹安排统筹安排最佳方案最佳方案实际应用实际应用例例1某工厂生产甲、乙两种产品,生产某工厂生产甲、乙两种产品,生产1t甲两甲两种产品需要种产品需要A种原料种原料4t、 B种原料种原料12t,产生的,产生的利润为利润为2万元;生产乙种产品需要万元;生产乙种产品需要A种原
4、料种原料1t、 B种原料种原料9t,产生的利润为,产生的利润为1万元。现有库存万元。现有库存A种原料种原料10t、 B种原料种原料60t,如何安排生产才能,如何安排生产才能使利润最大?使利润最大?分析:在关数据列表如下:分析:在关数据列表如下:A种原料 B种原料利润甲种产品4 122 乙种产品1 9 1现有库存10 60 设生产甲、乙两种产品的吨数分别为设生产甲、乙两种产品的吨数分别为x、y0060912104yxyxyxyxP 2利润利润何时达到最大?何时达到最大?xYo4x4xy=10y=1012x12x9y=609y=602x+y=02x+y=05(, 5 )45(, 0)21522xy
5、max152Z 例例2某工厂生产甲、乙两种产品某工厂生产甲、乙两种产品.已知生产甲种产品已知生产甲种产品1t需消耗需消耗A种矿石种矿石10t、B种矿石种矿石5t、煤、煤4t;生产乙种产品;生产乙种产品1吨需消耗吨需消耗A种矿石种矿石4t、B种矿石种矿石4t、煤、煤9t.每每1t甲种产品甲种产品的利润是的利润是600元元,每每1t乙种产品的利润是乙种产品的利润是1000元元.工厂在工厂在生产这两种产品的计划中要求消耗生产这两种产品的计划中要求消耗A种矿石不超过种矿石不超过300t、 消耗消耗B种矿石不超过种矿石不超过200t、消耗煤不超过、消耗煤不超过360t.若你是若你是厂长厂长,你应如何安排
6、甲乙两种产品的产量你应如何安排甲乙两种产品的产量(精确到精确到0.1t),才能使利润总额才能使利润总额达到最大达到最大?某工厂生产甲、乙两种产品某工厂生产甲、乙两种产品.已知生产甲种产品已知生产甲种产品1t需消耗需消耗A种矿石种矿石10t、B种矿石种矿石5t、煤、煤4t;生产乙种产品;生产乙种产品1吨需消耗吨需消耗A种矿石种矿石4t、B种矿石种矿石4t、煤、煤9t.每每1t甲种产品的利润是甲种产品的利润是600元元,每每1t乙种产品的利乙种产品的利润是润是1000元元.工厂在生产这两种产品的计划中要求消耗工厂在生产这两种产品的计划中要求消耗A种矿石不种矿石不超过超过300t、 消耗消耗B种矿石
7、不超过种矿石不超过200t、消耗煤不超过、消耗煤不超过360t.若你若你是厂长是厂长,你应如何安排甲乙两种产品的产量你应如何安排甲乙两种产品的产量(精确到精确到0.1t),才能使利才能使利润总额达到最大润总额达到最大?分分析析问问题题:1.本问题给定了哪些原材料本问题给定了哪些原材料(资源资源)?2.该工厂生产哪些产品该工厂生产哪些产品?3.各种产品对原材料各种产品对原材料(资源资源)有怎样的要求有怎样的要求?4.该工厂对原材料该工厂对原材料(资源资源)有何限定条件有何限定条件?5.每种产品的利润是多少每种产品的利润是多少?利润总额如何计算利润总额如何计算? 原原 材材料料每吨产品消耗的原材料
8、每吨产品消耗的原材料A种矿石种矿石B种矿石种矿石煤煤甲产品甲产品(t)乙产品乙产品(t)1054449原原 材料限材料限 额额300200360利利 润润6001000 xtyt把题中限制条件进行转化:把题中限制条件进行转化:约束条件约束条件10 x+4y3005x+4y2004x+9y360 x0y 0z=600 x+1000y. 目标函数目标函数:设生产甲、乙两种产品设生产甲、乙两种产品.分别为分别为x t、yt,利润总额为利润总额为z元元解解:设生产甲、乙两种产品设生产甲、乙两种产品.分别为分别为x t、yt,利润总额为利润总额为z元元,那么那么10 x+4y3005x+4y2004x+
9、9y360 x0y 0z=600 x+1000y.画画出以上不等式组所表示的可行域出以上不等式组所表示的可行域作作出直线出直线L 600 x+1000y=0.解得交点解得交点M的坐标为的坐标为(12.4,34.4)5x+4y=2004x+9y=360由由10 x+4y=3005x+4y=2004x+9y=360600 x+1000y=0M答答:应生产甲产品约应生产甲产品约12.4吨,乙产品吨,乙产品34.4吨,能使利润总额达到最大。吨,能使利润总额达到最大。(12.4,34.4)经过可行域上的点经过可行域上的点M时时,目标函数目标函数在在y轴上截距最大轴上截距最大.9030 0 xy10 20
10、1075405040此时此时z=600 x+1000y取得最大值取得最大值.4834291000411229360.y.x例3.gsp图形把直线把直线L向右上方平向右上方平移移实际问题实际问题线性规划问题线性规划问题寻找约束条件寻找约束条件建立目标函数建立目标函数列表列表设立变量设立变量转化转化1.约束条件要写全约束条件要写全; 3.解题格式要规范解题格式要规范. 2.作图要准确作图要准确,计算也要准确计算也要准确;注意注意: :结论结论1: 1:例例3.某工厂现有两种大小不同规格的钢板可截成某工厂现有两种大小不同规格的钢板可截成A、B、C三种规三种规格,每张钢板可同时截得三种规格的小钢板的块
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 34 简单 线性规划 问题 实际 应用
限制150内