132函数的极值与导数(上课).ppt
《132函数的极值与导数(上课).ppt》由会员分享,可在线阅读,更多相关《132函数的极值与导数(上课).ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3.2 函数的极值与导数函数的极值与导数单调性与导数的关系:单调性与导数的关系:设函数设函数y=f(x)在在某个区间某个区间内可导,内可导,如果如果f (x)0,则,则f(x)为增函数;为增函数;如果如果f (x)0f (x) =0 f (x) 0极大值极大值减减f (x) 0如何判断如何判断f (x0)是极大值或是极小值?是极大值或是极小值?左正右负为极大,右正左负为极小左正右负为极大,右正左负为极小v若寻找若寻找可导函数可导函数极值点极值点,可否只由可否只由f (x)=0 0求得即可求得即可? ?思考思考探索探索: x =0是否为函数是否为函数f(x)=x3的极值点的极值点?x yOf
2、 ( (x) ) x3 3 f (x)=3x2 当f (x)=0时,x =0,而x =0不是该函数的极值点.f (x0) =0 =0 x0 是可导函数是可导函数f(x)的极值点的极值点 x0左右侧导数异号左右侧导数异号 x0 是函数是函数f(x)的极值点的极值点 f (x0) =0=0注意:注意:f /(x0)=0是函数取得极值的必要不充分条件是函数取得极值的必要不充分条件练习练习1 下图是导函数下图是导函数 的图象的图象, 试找出函数试找出函数 的极值点的极值点, 并指出哪些是极大值点并指出哪些是极大值点, 哪些是极小值点哪些是极小值点.)(xfy)(xfy abxyx1Ox2x3x4x5x
3、6)(xfy因为因为 所以所以例例1 求函数求函数 的极值的极值.31( )443f xxx解解:, 4431)(3xxxf)2(2. 4)(2xxxxf)(令令 解得解得 或或, 0)( xf, 2x. 2x当当 , 即即 , 或或 ;当当 , 即即 .0)( xf0)( xf2x2x22x当当 x 变化时变化时, f (x) 的变化情况如下表的变化情况如下表:x(, 2)2(2, 2)2( 2, +)00f (x)极大值极大值极小值极小值 ( )fx+所以所以, 当当 x = 2 时时, f (x)有极大值有极大值 ;当当 x = 2 时时, f (x)有极小值有极小值 .例题选讲例题选讲
4、: :32834解解:).2)(2(42 xxxy令令 ,解得解得x1=-2,x2=2.0 y当当x变化时变化时, ,y的变化情况如下表的变化情况如下表:y x(-,-2) -2(-2,2) 2 (2,+) y + 0 - 0 + y 极大值极大值 极小值极小值 因此因此,当当x=-2时有极大值时有极大值,并且并且,y极大值极大值= ;而而,当当x=2时有极小值时有极小值,并且并且,y极小值极小值= .例例1 求函数求函数 的极值的极值.31( )443f xxx3283432834例题1的图像-2oxy2+-+f(x)= x3-4x+43134328求可导函数求可导函数f(x)极值的极值的
5、步骤步骤:(2)求导数求导数f (x);(3)求方程求方程f (x)=0的根;的根; (4)把定义域划分为把定义域划分为部分区间,并列成表格部分区间,并列成表格检查检查f (x)在方程根左右的符号在方程根左右的符号如果如果左正右负左正右负(+ -),), 那么那么f(x)在这个根处取得极在这个根处取得极大大值;值;如果如果左负右正左负右正(- +),), 那么那么f(x)在这个根处取得极在这个根处取得极小小值;值;(1) 确定函数的确定函数的定义域定义域;注意注意:函数极值是在某一点附近的小区间内定义:函数极值是在某一点附近的小区间内定义的,是的,是局部性质局部性质。因此一个函数在其整个定义区
6、间。因此一个函数在其整个定义区间上可能有上可能有多个极大值或极小值多个极大值或极小值,并对同一个函数来,并对同一个函数来说,在某说,在某一点的极大值也可能小于另一点的极小值一点的极大值也可能小于另一点的极小值。练习练习1.判断下面判断下面4个命题,其中是真命题序号为个命题,其中是真命题序号为 。可导函数必有极值;可导函数必有极值;可导函数在极值点的导数一定等于零;可导函数在极值点的导数一定等于零;函数的极小值一定小于极大值函数的极小值一定小于极大值(设极小值、极大值都存在);(设极小值、极大值都存在);函数的极小值(或极大值)不会多于一个。函数的极小值(或极大值)不会多于一个。3xy 如练习练
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 132 函数 极值 导数 上课
限制150内