经典)初中数学易错题分类汇编.doc
《经典)初中数学易错题分类汇编.doc》由会员分享,可在线阅读,更多相关《经典)初中数学易错题分类汇编.doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流(经典)初中数学易错题分类汇编【精品文档】第 33 页初中数学易错题分类一、数与式例题:的平方根是(A)2,(B),(C),(D)例题:等式成立的是(A),(B),(C),(D)二、方程与不等式字母系数 例题:关于的方程,且求证:方程总有实数根例题:不等式组的解集是,则的取值范围是(A),(B),(C),(D) 判别式例题:已知一元二次方程有两个实数根,且满足不等式,求实数的范围解的定义例题:已知实数、满足条件,则=_增根例题:为何值时,无实数解应用背景例题:某人乘船由地顺流而下到地,然后又逆流而上到地,共乘船3小时,已知船在静水中的速度为8千米/时,水
2、流速度为2千米/时,若、两地间距离为2千米,求、两地间的距离失根例题:解方程三、函数自变量例题:函数中,自变量的取值范围是_字母系数例题:若二次函数的图像过原点,则=_函数图像例题:如果一次函数的自变量的取值范围是,相应的函数值的范围是,求此函数解析式应用背景例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出若每床每晚收费再提高2元,则再减少10张床位租出以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_元四、直线型指代不明例题:直角三角形的两条边长分别为和,则斜边上的高等于_相似三角形对应性问题例题:在中,为上一点,在上取点,得到,若两个三角形相似,求的长等
3、腰三角形底边问题例题:等腰三角形的一条边为4,周长为10,则它的面积为_三角形高的问题例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度?矩形问题例题:有一块三角形铁片,已知最长边=12cm,高=8cm,要把它加工成一个矩形铁片,使矩形的一边在上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积?比例问题例题:若,则=_五、圆中易错问题点与弦的位置关系例题:已知是O的直径,点在O上,过点引直径的垂线,垂足为点,点分这条直径成两部分,如果O的半径等于5,那么= _点与弧的位置关系例题:、是O的切线,、是切点,点是上异于、的任意一点,那么 _平行弦
4、与圆心的位置关系例题: 半径为5cm的圆内有两条平行弦,长度分别为6cm和8cm,则这两条弦的距离等于_相交弦与圆心的位置关系例题:两相交圆的公共弦长为6,两圆的半径分别为、5,则这两圆的圆心距等于_相切圆的位置关系例题:若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为_练习题:一、容易漏解的题目1一个数的绝对值是5,则这个数是_;_数的绝对值是它本身(,非负数)2_的倒数是它本身;_的立方是它本身(,和0)3关于的不等式的正整数解是1和2;则的取值范围是_()4不等式组的解集是,则的取值范围是_()5若,则_(,2,0)6当为何值时,函数是一个一次函数(或) 7若一个三
5、角形的三边都是方程的解,则此三角形的周长是_(12,24或20)8若实数、满足,则_(2,)9在平面上任意画四个点,那么这四个点一共可以确定_条直线10已知线段=7cm,在直线上画线段=3cm,则线段=_(4cm或10cm)11一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少,求这两个角的度数(,或,)12三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_处?(4)13等腰三角形一腰上的高与腰长之比为,则该三角形的顶角为_(或)14等腰三角形的腰长为,一腰上的高与另一腰的夹角为,则此等腰三角形底边上的高为_(或)15矩
6、形的对角线交于点一条边长为1,是正三角形,则这个矩形的周长为_(或)16梯形中,=7cm,=3cm,试在边上确定的位置,使得以、为顶点的三角形与以、为顶点的三角形相似(=1cm,6cm或cm)17已知线段=10cm,端点、到直线的距离分别为6cm和4cm,则符合条件的直线有_条(3条)18过直线外的两点、,且圆心在直线的上圆共有_个(0个、1个或无数个)19在中,以为圆心,以为半径的圆,与斜边只有一个交点,求的取值范围(或)20直角坐标系中,已知,在轴上找点,使为等腰三角形,这样的点共有多少个?(4个)21在同圆中,一条弦所对的圆周角的关系是_(相等或互补)22圆的半径为5cm,两条平行弦的长
7、分别为8cm和6cm,则两平行弦间的距离为_(1cm或7cm)23两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)24一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)25切O于点,是O的弦,若O的半径为1,则的长为_(1或)26、是O的切线,、是切点,点是上异于、的任意一点,那么 _(或)27在半径为1的O中,弦,那么_(或)二、容易多解的题28已知,则_(3)29在函数中,自变量的取值范围为_()30已知,则_()31当为何值时,关于的方程有两个实数根(,且)32当为何值时,函数是二次函数(2)33若,则?()34方程组的实
8、数解的组数是多少?(2)35关于的方程有实数解,求的取值范围()36为何值时,关于的方程的两根的平方和为23?()37为何值时,关于的方程的两根恰好是一个直角三角形的两个锐角的余弦值?()38若对于任何实数,分式总有意义,则的值应满足_()39在中,作既是轴对称又是中心对称的四边形,使、分别在、上,这样的四边形能作出多少个?(1)40在O中,弦=8cm,为弦上一点,且=2cm,则经过点的最短弦长为多少?(cm)41两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_(2)三、容易误判的问题:1两条边和其中一组对
9、边上的高对应相等的两个三角形全等。2两边及第三边上的高对应相等的两个三角形全等。3两角及其对边的和对应相等的两个三角形全等。4两边及其一边的对角对应相等的两个三角形全等。知识点1:一元二次方程的基本概念1一元二次方程3x2+5x-2=0的常数项是-2.2一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1直角坐标系中,点A(3,0)在y轴上。2直角坐标系中,x轴上的任意点的横坐标为0.3直角坐标系中,点A(1,1)在第一
10、象限.4直角坐标系中,点A(-2,3)在第四象限.5直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1当x=2时,函数y=的值为1.2当x=3时,函数y=的值为1.3当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1函数y=-8x是一次函数.2函数y=4x+1是正比例函数.3函数是反比例函数.4抛物线y=-3(x-2)2-5的开口向下.5抛物线y=4(x-3)2-10的对称轴是x=3.6抛物线的顶点坐标是(1,2).7反比例函数的图象在第一、三象限.知识点5:数据的平均数中位数与众数1数据13,10,12,8,7的平均数是10.2数据3,4,2,4,4的
11、众数是4.3数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1cos30= . 2sin260+ cos260= 1.32sin30+ tan45= 2.4tan45= 1.5cos60+ sin30= 1. 知识点7:圆的基本性质1半圆或直径所对的圆周角是直角.2任意一个三角形一定有一个外接圆.3在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4在同圆或等圆中,相等的圆心角所对的弧相等.5同弧所对的圆周角等于圆心角的一半.6同圆或等圆的半径相等.7过三个点一定可以作一个圆.8长度相等的两条弧是等弧.9在同圆或等圆中,相等的圆心角所对的弧相等.10经过
12、圆心平分弦的直径垂直于弦。知识点8:直线与圆的位置关系1直线与圆有唯一公共点时,叫做直线与圆相切.2三角形的外接圆的圆心叫做三角形的外心.3弦切角等于所夹的弧所对的圆心角.4三角形的内切圆的圆心叫做三角形的内心.5垂直于半径的直线必为圆的切线.6过半径的外端点并且垂直于半径的直线是圆的切线.7垂直于半径的直线是圆的切线.8圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1两个圆有且只有一个公共点时,叫做这两个圆外切.2相交两圆的连心线垂直平分公共弦.3两个圆有两个公共点时,叫做这两个圆相交.4两个圆内切时,这两个圆的公切线只有一条.5相切两圆的连心线必过切点.知识点10:正多边形基本性质
13、1正六边形的中心角为60.2矩形是正多边形.3正多边形都是轴对称图形.4正多边形都是中心对称图形.知识点11:一元二次方程的解1方程的根为 .Ax=2 Bx=-2 Cx1=2,x2=-2 Dx=42方程x2-1=0的两根为 .Ax=1 Bx=-1 Cx1=1,x2=-1 Dx=23方程(x-3)(x+4)=0的两根为 .A.x1=-3,x2=4 B.x1=-3,x2=-4 C.x1=3,x2=4 D.x1=3,x2=-44方程x(x-2)=0的两根为 .Ax1=0,x2=2 Bx1=1,x2=2 Cx1=0,x2=-2 Dx1=1,x2=-25方程x2-9=0的两根为 .Ax=3 Bx=-3
14、Cx1=3,x2=-3 Dx1=+,x2=-知识点12:方程解的情况及换元法1一元二次方程的根的情况是 .A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2不解方程,判别方程3x2-5x+3=0的根的情况是 .A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根3不解方程,判别方程3x2+4x+2=0的根的情况是 .A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根4不解方程,判别方程4x2+4x-1=0的根的情况是 .A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根
15、 D.没有实数根5不解方程,判别方程5x2-7x+5=0的根的情况是 .A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根6不解方程,判别方程5x2+7x=-5的根的情况是 .A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根7不解方程,判别方程x2+4x+2=0的根的情况是 .A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根8. 不解方程,判断方程5y+1=2y的根的情况是 A.有两个相等的实数根 B. 有两个不相等的实数根C.只有一个实数根 D. 没有实数根9. 用 换 元
16、法 解方 程 时, 令 = y,于是原方程变为 .A.y-5y+4=0 B.y-5y-4=0 C.y-4y-5=0 D.y+4y-5=010. 用换元法解方程时,令= y ,于是原方程变为 .A.5y-4y+1=0 B.5y-4y-1=0 C.-5y-4y-1=0 D. -5y-4y-1=011. 用换元法解方程()2-5()+6=0时,设=y,则原方程化为关于y的方程是 .A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0知识点13:自变量的取值范围1函数中,自变量x的取值范围是 . A.x2 B.x-2 C.x-2 D.x-22函数y=的自变量的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 初中 数学 易错题 分类 汇编
限制150内