新编基础物理学上册12-13单元课后答案.doc
《新编基础物理学上册12-13单元课后答案.doc》由会员分享,可在线阅读,更多相关《新编基础物理学上册12-13单元课后答案.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流新编基础物理学上册12-13单元课后答案【精品文档】第 14 页第十二章121 图示为三种不同的磁介质的BH关系曲线,其中虚线表示的是B =0H的关系说明a、b、c各代表哪一类磁介质的BH关系曲线? 答:因为顺磁质1,抗磁质1,铁磁质1, B =0H。所以a代表 铁磁质 的BH关系曲线 b代表 顺磁质 的BH关系曲线 c代表 抗磁质 的BH关系曲线 HabcBO题图121122 螺绕环中心周长,环上线圈匝数N=200匝,线圈中通有电流。(1)求管内的磁感应强度和磁场强度;(2)若管内充满相对磁导率的磁性物质,则管内的和是多少?(3)磁性物质内由导线中电流
2、产生的和由磁化电流产生的各是多少?分析:电流对称分布,可应用安培环路定理求解。且,。解:(1)管内磁场强度磁感应强度 (2)管内充满磁介质后 (3)磁介质内由导线中电流产生的则123 一铁制的螺绕环,其平均圆周长为30cm,截面积为1cm2,在环上均匀绕以300匝导线,当线圈内的电流为0.032A时,环内的磁通量为.试计算(1)环内的磁通量密度;(2)环圆截面中心的磁场强度;(3)磁化面电流;(4)环内材料的磁导率、相对磁导率及磁化率;(5)环芯内的磁化强度.分析:可应用介质中安培环路定理求磁场强度。 由磁场强度定义式和求解磁化面电流和磁化强度。由和相对磁导率及磁化率定义求解解:(1)环内磁通
3、密度。 (2)电流对称分布,可应用介质中安培环路定理求解,取以螺绕环中心同心的圆弧(在螺绕环截面内)为积分路径,则有即, 。 (3)由磁场强度定义和,得磁化面电流线密度(由比较得)。 而磁化面电流: (4) (5)124 在螺绕环的导线内通有电流20A,环上所绕线圈共400匝,环的平均周长是40cm,利用冲击电流计测得环内磁感应强度是1.0T。计算环的截面中心处的(1)磁场强度;(2)磁化强度;(3)相对磁导率。分析:运用介质中安培环路定理求磁场强度;磁场强度定义求解磁化强度。由求磁化面电流。解:(1)由介质中安培环路定理可求得 (2)磁化强度大小为 (3)磁化面电流相对磁导率。125 如题1
4、2-5图所示,一同轴长电缆由两导体组成,内层是半径为的圆柱形导体,外层是内、外半径分别为和的圆筒,两导体上电流等值反向,均匀分布在横截面上,导体磁导率均为,两导体中间充满不导电的磁导率为的均匀介质,求各区域中磁感应强度的分布。分析:应用介质中安培环路定理求解。解:由于电流对称分布,场也对称分布,可应用安培环路定理求解。如图以轴线上一点为圆心,r为半径作一安培环路,环路所在平面垂直于电流方向,且与导体中电流方向成右手螺旋关系。(1)当时,由,得:(2)当时,由,得(3)当时,由,得:(4)当时,题12-5图第十三章习 题图13-1 题图13-213-1 如题图13-1所示,两条平行长直导线和一个
5、矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为r1,r2。已知两导线中电流都为,其中I0和为常数,t为时间。导线框长为a宽为b,求导线框中的感应电动势。分析:当导线中电流I随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律计算感应电动势,其中磁通量,B为两导线产生的磁场的叠加。解:无限长直电流激发的磁感应强度为。取坐标Ox垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。取回路的绕行正方向为顺时针。由场强的叠加原理可得x处的磁感应强度大小 通过微分面积的磁通量为 通过矩形线圈的磁通量为 感生电动势 时,回路中感应电动势的实际
6、方向为顺时针;时,回路中感应电动势的实际方向为逆时针。13-2 如题图13-2所示,有一半径为r=10cm的多匝圆形线圈,匝数N=100,置于均匀磁场中(B=0.5T)。圆形线圈可绕通过圆心的轴O1O2转动,转速n=600rev/min。求圆线圈自图示的初始位置转过时,(1) 线圈中的瞬时电流值(线圈的电阻为R=100,不计自感);(2) 感应电流在圆心处产生的磁感应强度。分析:应用法拉第电磁感应定律求解感应电动势。应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度。解:(1) 圆形线圈转动的角速度 rad/s。设t=0时圆形线圈处在图示位置,取顺时针方向为回路绕行的正方
7、向。则t时刻通过该回路的全磁通 电动势 感应电流 将圆线圈自图示的初始位置转过时,代入已知数值 得: (2) 感应电流在圆心处产生的磁感应强度的大小为 的方向与均匀外磁场的方向垂直。 题图13-3 题图13-413-3 均匀磁场被限制在半径R=10cm的无限长圆柱形空间内,方向垂直纸面向里。取一固定的等腰梯形回路abcd,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示。设磁场以的匀速率增加,已知,求等腰梯形回路abcd感生电动势的大小和方向。分析:求整个回路中的电动势,采用法拉第电磁感应定律,本题的关键是确定回路的磁通量。解:设顺时针方向为等腰梯形回路绕行的正方向.则t时刻通过该
8、回路的磁通量,其中S为等腰梯形abcd中存在磁场部分的面积,其值为电动势 代入已知数值 “”说明,电动势的实际方向为逆时针,即沿adcba绕向。用楞次定律也可直接判断电动势的方向为逆时针绕向。13-4 如题图13-4所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:(1) 在任意时刻t通过矩形线圈的磁通量; (2) 在图示位置时矩形线圈中的电动势。分析:线圈运动,穿过线圈的磁通量改变,线圈中有感应电动势产生,求出t时刻穿过线圈的磁通量,再由法拉第电磁感应定律求感应电动势。解:(1) 设线
9、圈回路的绕行方向为顺时针。由于载流长直导线激发磁场为非均匀分布,。因此,必须由积分求得t时刻通过回路的磁通量。取坐标Ox垂直于直导线,坐标原点取在直导线的位置,坐标正方向为水平向右,则在任意时刻t通过矩形线圈的磁通量为(2)在图示位置时矩形圈中的感应电动势 电动势的方向沿顺时针绕向。13-5 如题图13-5所示为水平面内的两条平行长直裸导线LM与,其间距离为,其左端与电动势为的电源连接.匀强磁场垂直于图面向里,一段直裸导线ab横嵌在平行导线间(并可保持在导线上做无摩擦地滑动),电路接通,由于磁场力的作用,ab从静止开始向右运动起来。求:(1) ab达到的最大速度; (2) ab到最大速度时通过
10、电源的电流I。分析:本题是包含电磁感应、磁场对电流的作用和全电路欧姆定律的综合性问题。当接通电源后,ab中产生电流。该通电导线受安培力的作用而向右加速运动,由于ab向右运动使穿过回路的磁通量逐渐增加,在回路中产生感应电流,从而使回路中电流减小,当回路中电流为零时,直导线ab不受安培力作用,此时ab达到最大速度。解:(1)电路接通,由于磁场力的作用,ab从静止开始向右运动起来。设ab运动的速度为v,则此时直导线ab所产生的动生电动势,方向由b指向a.由全电路欧姆定理可得此时电路中的电流为ab达到的最大速度时,直导线ab不受到磁场力的作用,此时。所以ab达到的最大速度为(2)ab达到的最大速度时,
11、直导线ab不受到磁场力的作用,此时通过电路的电流i=0。所以通过电源的电流也等于零。 题图13-5 题图13-613-6 如题图13-6所示,一根长为L的金属细杆ab绕竖直轴O1O2以角速度在水平面内旋转,O1O2在离细杆a端L/5处。若已知均匀磁场平行于O1O2轴。求ab两端间的电势差Ua-Ub.分析:由动生电动势表达式先求出每段的电动势,再将ab的电动势看成是oa和ob二者电动势的代数和,ab两端的电势差大小即为ab间的动生电动势大小。求每段的电动势时,由于各处的运动速度不同,因此要将各段微分成线元,先由动生电动势公式计算线元的两端的动生电动势,再积分计算整段的动生电动势。解:设金属细杆a
12、b与竖直轴O1O2交于点O,将ab两端间的动生电动势看成ao与ob两段动生电动势的串联。取ob方向为导线的正方向,在铜棒上取极小的一段线元,方向为ob方向。线元运动的速度大小为。由于互相垂直。所以两端的动生电动势 ob的动生电动势为 动生电动势的方向由b指向O。同理oa的动生电动势为动生电动势的方向由a指向O。所以ab两端间的的动生电动势为动生电动势的方向由a指向了b;a端带负电,b端带正电。ab两端间的电势差 b端电势高于a端。 题图13-7 题图13-813-7 如题图13-7所示,导线L以角速度绕其端点O旋转,导线L与电流I在共同的平面内,O点到长直电流I的距离为a,且aL,求导线L在与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新编 基础 物理学 上册 12 13 单元 课后 答案
限制150内