高中数学——空间向量与立体几何练习题(附答案).doc
《高中数学——空间向量与立体几何练习题(附答案).doc》由会员分享,可在线阅读,更多相关《高中数学——空间向量与立体几何练习题(附答案).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流高中数学空间向量与立体几何练习题(附答案)【精品文档】第 5 页空间向量练习题1. 如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD60,E是CD的中点,PA底面ABCD,PA2. ()证明:平面PBE平面PAB;()求平面PAD和平面PBE所成二面角(锐角)的大小.如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),P(0,0,2),()证明 因为,平面PAB的一个法向量是,所以共线.从而BE平面PAB.又因为平面PBE,故平面PBE平面PAB.()解 易知 设是平面PBE的一个法向量,
2、则由得所以 设是平面PAD的一个法向量,则由得所以故可取于是, 故平面PAD和平面PBE所成二面角(锐角)的大小是2. 如图,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1中点。()求证:AB1面A1BD;()求二面角AA1DB的大小;()求点C到平面A1BD的距离;()证明 取中点,连结为正三角形,在正三棱柱中,平面平面,平面取中点,以为原点,的方向为轴的正方向建立空间直角坐标系,则,xzABCDOFy,平面()解 设平面的法向量为令得为平面的一个法向量由()知平面,为平面的法向量二面角的大小为()解 由(),为平面法向量,点到平面的距离ACDOBEyzx3.如图,在四面体ABCD中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 空间 向量 立体几何 练习题 答案
限制150内