图形专题——相似与几何图形及圆的综合应用学案.doc





《图形专题——相似与几何图形及圆的综合应用学案.doc》由会员分享,可在线阅读,更多相关《图形专题——相似与几何图形及圆的综合应用学案.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、相似的综合应用适用学科初中数学适用年级初中三年级适用区域通用课时时长(分钟)60知识点相似三角形的性质;相似三角形的判定;相似三角形的应用;相似三角形的综合;学习目标掌握相似多边形的对应角相等,对应边成比例,面积的比等于相似比的平方掌握两个三角形相似的概念,探索两个三角形相似的条件掌握相似三角形与其它图形的综合问题;学习重点利用图形的相似解决一些综合问题学习难点利用图形的相似解决一些综合问题16学习过程一、 复习预习本章知识网络图二、知识讲解考点1 相似三角形的判定方法(1)定义法:三个对应角相等,三条对应边成比例的两个三角形相似(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)
2、相交,所构成的三角形与原三角形相似(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似简述为:两角对应相等,两三角形相似(4)判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似简述为:两边对应成比例且夹角相等,两三角形相似(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似简述为:三边对应成比例,两三角形相似 考点2 常见的相似模型1.如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)2.如图:其中1=2,则ADEABC称为“斜交型”的相似三角形。(有
3、“反A共角型”、“反A共角共边型”、 “蝶型”)3.如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)4.如图:1=2,B=D,则ADEABC,称为“旋转型”的相似三角形。5.一线三角模型 考点3 常用方法归纳 (1)总体思路:“等积”变“比例”,“比例”找“相似”(2)找相似: 通过“横找”“竖看”寻找三角形(3)找中间比: 若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。
4、方法:将等式左右两边的比表示出来。(4) 添加辅助线:若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.注:添加辅助平行线是获得成比例线段和相似三角形的重要途径。平面直角坐标系中通常是作垂线(即得平行线)构造相似三角形或比例线段。(5)比例问题:常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。(6)对于复杂的几何图形,通常采用将部分需要的图形(或基本图形)“分离”出来的办法处理。 三、例题精析考点一 相似三角形与简单几何图形结合问题例1、如图是小红设计的钻石形商标,ABC是边长为2的等边三角形
5、,四边形ACDE是等腰梯形,ACED,EAC=60,AE=1(1)证明:ABECBD;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);(3)小红发现AM=MN=NC,请证明此结论;(4)求线段BD的长【规范解答】:(1)证明:ABC是等边三角形,AB=BC,BAC=BCA=60(1分)四边形ACDE是等腰梯形,EAC=60,AE=CD,ACD=CAE=60,BAC+CAE=120=BCA+ACD,即BAE=BCD(2分)在ABE和BCD中,AB=BC,BAE=BCD,AE=CD,ABECBD(3分)(2)存在答案不唯一如ABNCDN证明
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图形 专题 相似 几何图形 综合 应用

限制150内