奥数行程经典50题+一元一次方程解应用题.doc
《奥数行程经典50题+一元一次方程解应用题.doc》由会员分享,可在线阅读,更多相关《奥数行程经典50题+一元一次方程解应用题.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东
2、西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270(67.5-60)=36分钟,所以路程=36(60+75)=4860米。3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到
3、第二个P点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(5403)4=1804=720千米,乙总共走了7203=2160千米。4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?(第六届小数报数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了2425=60
4、0米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走6006=100米。总路程就是=10030=3000米。5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5310.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-28.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共
5、同走了两村距离(322)倍的行程.其中张走了3.5724.5(千米),24.5=8.58.57.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米. 6、 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图: 图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间
6、,小王和小李共同走了B与A之间这段距离,它等于 这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3(5.4-4.8)60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要1302=65(分钟).从乙地到甲地需要的时间是13065=195(分钟)3小时15分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.
7、快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图: 设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面取单位准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7 小时,共行驶37=21(单位).从B到C再往前一个单位到D点.离A点15-114(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14(23)2.8(小时)
8、.慢车从C到A返回行驶至与快车相遇共用了7.50.52.810.8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25,则可提前40分钟到达.那么甲、乙两地相距多少千米?解:设原速度是1. 这是具体地反映:距离固定,时间与速度成反比.时间比值 :6:5这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时。原来时间就是=16=6小时。同样道理,车速提高30,速度比值:1:(1+30%)=1:1.3时间比值:1.3:1这样也节省了0.3份,节省1小时,可以推出行驶
9、一段时间后那段路程的原时间为1.30.3=13/3所以前后的时间比值为(6-13/3):13/3=5:13。所以总共行驶了全程的5/(5+13)=5/1810、甲、乙两车分别从A,B两地出发,相向而行,出发时,甲、乙的速度比是 5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B时,乙离A地还有10千米。那么A,B两地相距多少千米?解:相遇后速度比值为5(1-20%):4(1+20%)=5:6,假设全程为9份,甲走了5份,乙走了4份,之后速度发生变化,这样甲到达B地,甲又走了4份,根据速度变化后的比值,乙应该走了465=24/5份,这样距A地还有5-24/5份,所以全程为1
10、0(1/5)9=450千米。11、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达占地时,甲离B地还有200米。甲修车的时间内,乙走了多少米?解: 由甲共走了10000-200=9800(米),可推出在甲走的同时乙共走了98004=2450(米),从而又可推出在甲修车的时间内乙走了10000-2450=7550(米)。列算式为10000一(10000-200)4=7550(米)答:甲修车的时间内乙走了7550米。12、爷爷坐汽车,小李骑自行车,沿一条公路同时从A地去B地。汽车每小时行40千米,是自行车速
11、度的25倍。结果爷爷比小李提前3小时到达B地。A、B两地间的路程是多少千米?解法一:根据汽车的速度是自行车的25倍可知,同时从A地到B地,骑自行车所花时间是汽车的25倍,也就是要比坐汽车多花15倍的时间,其对应的具体量是3小时,可知坐车要3(2.5一1)=2(小时),A、B两地问的路程为402=80(千米)。即403(2.51)80(千米)解法二:汽车到B地时,自行车离B地(40253)=48(千米),这48千米就是自行车比汽车一共少走的路程,除以自行车每小时比汽车少走的路程,就可以得出汽车走完全程所用的时间,也就可以求出两地距离为40(402.53)(40402.5)=80(千米)13、如图
12、,有一个圆,两只小虫分别从直径的两端与C同时出发,绕圆周相向而行。它们第一次相遇在离点8厘米处的B点,第二次相遇在离c点处6厘米的点,问,这个圆周的长是多少? 解: 如上图所示,第一次相遇,两只小虫共爬行了半个圆周,其中从点出发的小虫爬了8厘米,第二次相遇,两只小虫从出发共爬行了1个半圆周,其中从点出发的应爬行83=24(厘米),比半个圆周多6厘米,半个圆周长为83-6=18(厘米),一个圆周长就是:(83-6)2=36(厘米)答:这个圆周的长是36厘米。14、两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开
13、出几小时?解法一:由于货车和客车的速度不同,而要走的路程相同,所以货车和客车走完全程所需的时间不同,客车比货车多消耗的时间就是它比货车提早开出的时间。列算式为601550-15=3(小时)解法二:同时出发,货车到达某地时客车距离某地还有(60-50)15=150(千米)2客车要比货车提前开出的时间是:15050=3(小时) 18、一个圆的周长为60厘米,三个点把这个圆圈分成三等分,3只甲虫A、B、C按顺时针方向分别在这三个点上,它们同时按逆时针方向沿着圆圈爬行,A的速度为每秒5厘米,B的速度为每秒15厘米,C的速度为每秒25厘米问3只甲虫爬出多少时间后第一次到达同一位置?解:我们先考虑B、C两
14、只甲虫什么时候到达同一位置,C与B相差20厘米,C追上B需要20(25-15)=20(秒)而20秒后每次追及又需60(2.5-1.5)=60(秒);再考虑 A与C,它们第一次到达同一位置要20(5-25)=8(秒),而8秒后,每次追及又需60(5-25)=24(秒)可分别列出A与C、B与C相遇的时间,推导出3只甲虫相遇的时间解:(1)C第一次追上B所需时间20(25-15)=20(秒)(2)以后每次C追上B所需时间: 60(25-15)=60(秒)(3)C追上B所需的秒数依次为: 20,80,140,200,(4)A第一次追上C所需时间:20(5-25)=8(秒)(5)以后A每次追上C所需时间
15、:60(5-25)=24(秒)(6)A追上C所需的秒数依次为: 8,32,56,80,10419、甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。解:先画图如下: 【方法一】 若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟.而从A到D则用26分钟,因此,甲走C到D之间的路程时,所用时间应为:(26-6)=20(分)。同时,由上图可知,C、D间的路程等于BC加BD.即等于乙在6分钟内所走的路程与在26分钟内所走的路程之和,为50(266)=1600(米).所以,甲的
16、速度为16002080(米/分),由此可求出A、B间的距离。50(26+6)(26-6)=50322080(米/分)(80+50)61306=780(米)答:A、B间的距离为780米。【方法二】设甲的速度是x米/分钟那么有(x-50)26=(x+50)6解得x=80所以两地距离为(80+50)6=780米20.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快,两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰。那么甲回到出发点共用多少小时?解析:由甲、乙两人下山的速度是上山的1.5倍,有:甲、乙相遇
17、时,甲下山600米路程所需时间,相当于甲上山走6001.5=400米的时间。所以甲、乙以上山的速度走一小时,甲比乙多走600+400=1000米。 根据的结论,甲以上山的速度走1小时的路程比山坡长度多400,所以山坡长3600米。1小时后,甲已下坡600米,还有3600-600=3000米。所以,甲再用30006000=0.5小时。总上所述,甲一共用了1+0.5=1.5小时。评注: 本题关键在转化,把下山的距离再转化为上山的距离,这种转化是在保证时间相等的情况下。通过转化,可以理清思路。但是也要分清哪些距离是上山走的,哪些是下山走的。21.某人沿电车线路行走,没12分钟有一辆电车从后面追上,每
18、4分钟有一辆电车迎面开来。假设两个起点站的发车间隔是相同的,求这个发车间隔?解析:设两车的距离为单位1。在车追人时,一辆车用12分钟追上距离为1的人。所以车与人的速度差为 22.龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停的跑;兔子边跑边玩,它先跑了1分钟后玩了15分钟,又跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,.。那么先到达终点比后到达终点的快多少分钟?解析:乌龟用时:5.2360=104分钟;兔子总共跑了:5.22060=15.6分钟。而我们有:15.6=1+2+3+4+5+0.6 按照题目条件,从上式中我们可以知道兔子一共休息了5次,共155=75
19、分钟。所以兔子共用时:15.6+75=90.6分钟。 兔子先到达终点,比后到达终点的乌龟快:104-90.6=13.4分钟。23.A、C两地相距2千米,C、B两地相距5千米。甲、乙两人同时从C地出发,甲向B地走,到达B地后立即返回;乙向A地走,到达A地后立即返回。如果甲速度是乙速度的1.5倍,那么在乙到达D地时,还未能与甲相遇,他们还相距0.5千米,这时甲距C地多少千米?解析:由甲速是乙速的1.5倍的条件,可知甲路程是乙路程的1.5倍。设CD距离为x千米,则乙走的路程是(4+x)千米,甲路程为(4+x)1.5千米或(52-x-0.5)千米。列方程得: (4+x)1.5=52-x-0.5x=1.
20、4 这时甲距C地:1.4+0.5=1.9千米。24张明和李军分别从甲、乙两地同时想向而行。张明平均每小时行5千米;而李军第一小时行1千米,第二小时行3千米,第三小时行5千米,(连续奇数)。两人恰好在甲、乙两地的中点相遇。甲、乙两地相距多少千米?解析:解答此题的关键是去相遇时间。由于两人在中点相遇,因此李军的平均速度也是5千米/小时。5就是几个连续奇数的中间数。因为5是1、3、5、7、9这五个连续奇数的中间数,所以,从出发到相遇经过了5个小时。甲、乙两地距离为552=50千米。25.甲、乙、丙三人进行200米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都
21、不变,那么当乙到达终点时,丙离终点还有多少米?分析: 在相同的时间内,乙行了(200-20)=180(米),丙行了200-25=75(米),则丙的速度是乙 26.老师教同学们做游戏:在一个周长为114米的圆形跑道上,两个同学从一条直径的两端同时出发沿圆周开始跑,1秒钟后他们都调头跑,再过3秒他们又调头跑,依次照1、3、5分别都调头而跑,每秒两人分别跑5.5米和3.5米,那么经过几秒,他们初次相遇?解析:半圆周长为1442=72(米)先不考虑往返,两人相遇时间为:72(5.5+3.5)=8(秒)初次相遇所需时间为:1+3+5+15=64(秒)。27.甲、乙两地间有一条公路,王明从甲地骑自行车前往
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 行程 经典 50 一元一次方程 应用题
限制150内