《线性代数试卷及答案.doc》由会员分享,可在线阅读,更多相关《线性代数试卷及答案.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流线性代数试卷及答案【精品文档】第 9 页 线性代数A 试题(A 卷)试卷类别:闭卷 考试时间:120分钟考试科目:线性代数 考试时间: 学号: 姓名: 题号一二三四五六 七总 分得分阅卷人一 单项选择题(每小题3分,共30分)1设经过初等行变换变为,则( ).(下面的分别表示矩阵的秩)。; ; ; 无法判定与之间的关系。2设为阶方阵且,则( )。 中有一行元素全为零; 有两行(列)元素对应成比例;中必有一行为其余行的线性组合; 的任一行为其余行的线性组合。3. 设是阶矩阵(), ,则下列结论一定正确的是: ( )4下列不是维向量组线性无关的充分必要条件是
2、( )存在一组不全为零的数使得;不存在一组不全为零的数使得的秩等于;中任意一个向量都不能用其余向量线性表示5设阶矩阵,若矩阵的秩为,则必为( )。1; ; ; .6四阶行列式的值等于( )。; ; .7设为四阶矩阵且,则的伴随矩阵的行列式为( )。; ; ; 8设为阶矩阵满足,为阶单位矩阵,则(); ; ; 9设,是两个相似的矩阵,则下列结论不正确的是( )。与的秩相同; 与的特征值相同;与的特征矩阵相同; 与的行列式相同;10设为阶矩阵,则以为特征值是的( )。充分非必要条件; 必要非充分条件;既非充分又非必要条件; 充分必要条件; 二填空题(每小题3分,共18分)1计算行列式。2. _。3
3、二次型对应的对称矩阵为 。4已知,是欧氏空间的一组标准正交基,则向量在这组基下的坐标为 。5已知矩阵的特征值为则_。6设均为3维列向量,记矩阵,。如果,则 。三(8分) , 求。四(10分)设向量组,。试求它的秩及一个极大无关组,并把其余向量用该极大无关组线性表示。五(12分)讨论线性方程组解的情况,并在有无穷多解时求其解。六(14分)设,(1)、求出的所有特征值和特征向量;(2)、求正交矩阵,使得为对角矩阵。七(8分)对任意的矩阵,证明:(1) 为对称矩阵, 为反对称矩阵;(2) 可表示为一个对称矩阵和一个反对称矩阵之和。线性代数A参考答案(A卷)一、单项选择题(每小题3分,共30分)123
4、45678910BCDABDCCCD二、填空题(每小题3分,共18分)1、 256; 2、 ; 3、;4、 ; 5、 4; 6、 2 。三 解:因为矩阵A的行列式不为零,则A可逆,因此.为了求,可利用下列初等行变换的方法:(6分)所以.(8分)四解:对向量组作如下的初等行变换可得:(5分)从而的一个极大线性无关组为,故秩2(8分)且,(10分)五解:对方程组的增广矩阵进行如下初等行变换:(1) 当即系数矩阵与增广矩阵的秩均为3,此时方程组有唯一解.(5分)(2) 当系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无解.(6分)(3) 当此时方程组有无穷多组解.方程组的增广矩阵进行初等行变换可化为
5、故原方程组与下列方程组同解: 令可得上述非齐次线性方程组的一个特解;它对应的齐次线性方程组的基础解系含有一个元素,令可得为该齐次线性方程组的一个解,它构成该齐次线性方程组的基础解系.此时原方程组的通解为(12分)六解:(1)由于的特征多项式故的特征值为(二重特征值),。(3分)当时,由,即:得基础解系为,故属于特征值的所有特征向量为, 不全为零的任意常数。(6分)当时,由,即:得基础解系为,故属于特征值的所有特征向量为, 为非零的任意常数。-(8分)(2)将正交化可得:。再将其单位化得:将单位化得:。(12分)则是的一组单位正交的特征向量,令则是一个正交矩阵,且。(14分)七证明:(1) 因为, 因此为对称矩阵。(2分)同理,因为,因此为反对称矩阵。(4分)(2) 因为(6分)而由(1) 知为对称矩阵, 为反对称矩阵,因此任何矩阵 都可以表示为一个对称矩阵和一个反对称矩阵之和。(8分)
限制150内