CAE培训课件三(65页).doc
《CAE培训课件三(65页).doc》由会员分享,可在线阅读,更多相关《CAE培训课件三(65页).doc(63页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 一、材料力学的基础知识工程结构或机械的各组成部分,如建筑物的梁和柱、机床的轴,统称为构件。当工程结构或机械工作时,构件将受到载荷的作用,为保证工程结构或机械的正常工作,构件应有足够的能力负担起应当承受的载荷。因此,它应当满足以下的要求: 1)强度的要求 在规定载荷作用下构件当然不应破坏。例如,冲床的曲轴不可折断,储气罐不应爆破。强度要求就是指构件应有足够的抵抗破坏的能力。2)刚度要求 在载荷作用下,构年即使有足够的强度,但若变形过大仍不能正常工作,例如,若齿轮轴变形过大,将造成齿轮和轴承不均匀磨损,引起噪音。机床主轴变形过大,将影响加工精度。刚度要求就是指构件应有足够的抵抗变形的能力。3)
2、稳定性要求 有些受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等,应始终维持原有的直线平衡形态,保证不被压弯。稳定性要求就是指构件应有足够的保持原有平衡形态的能力。若构件的横截面尺寸不足或形状不合理,或材料选用不当,将不能满足上述要求,从而不能保证工程结构和机械的安全工作。相反,也不应不恰当地加大横截面尺寸或选用优质材料,这虽满足了上述要求,却多使用了材料和增加了成本,造成浪费。材料力学的任务就是保证在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。1. 1基本概念1.1.1载荷(load)也称为力、外力、负荷等,可以分成如下所示的各种类型:1)根据构
3、件内生成的应力来分类: 拉伸载荷,压缩载荷,弯曲载荷,剪切载荷,扭转载荷。2)采用理论公式的载荷分类: 轴向力(N)、横向载荷(N)、弯矩(Nm)、扭矩(Nm)3)按载荷的分布状态分类: 分布载荷(均匀分布和任意分布) 集中载荷(分布载荷的范围相对狭隘情况下的近似)4)给予坐标的一点的载荷分类(在有限元法中这样的表示很多): Fx、Fy、Fz、Mx、My、Mz Fx为x 轴方向上的载荷; Mx为绕x 轴转的弯矩载荷5)由加在构件上的载荷的变化形式分类:静载荷(不随时间变化的载荷) 图1.1动载荷(不规则载荷、周期载荷、正弦波载荷、冲击载荷)图1.26)由载荷的作用位置来分类:表面力(作用于表面
4、的载荷)物体力(作用于物体体积或质量的载荷,以加速度载荷为代表)7)由载荷的原因来分类:自重、压力载荷、水头压力、浮力、系留力、离心力载荷。地震载荷、风载荷、温度载荷、热套、压力。l (1)与材料力学中理论方面有关的,根据构件内生成的应力来分类;l (2)采用理论公式的载荷分类则是重要的,它们也表示了所对应的构件的中和轴,载荷作用于那个方向;l (3)按载荷的分布状态分类在有限元法中进行应力分析时非常重要的;l (4)基于坐标的一点的载荷分类;l (6)由载荷的作用位置来分类;l (5)由加在构件上的载荷的变化形式分类则是与强度评价方面有关;l (7)由载荷的原因分类,与(5)分类密切相关。1
5、.1.2 应力(stress)载荷在构件内部产生的抵抗力就是应力。应力,为载荷除以构件的剖面面积所得的值,也即单位面积上的力。应力的记号对于垂向应力是(sigma),切应力为(tau),通用情况下用s。应力的种类:应力分成作用于构件剖面的垂直方向上的法向应力(正应力、拉伸应力和压缩应力:)和作用于构件剖面内的斜线方向上的切面应力(剪应力:)。图1.3在有限元法中,输出单元的法向应力(为拉伸应力,一为压应力)和切应力。1.1.3应变(strain)和位移(displacement)施加载荷则构件就会变形。把这个变形用应变和位移来说明。位移结构体中各点的移动量;应变对于原来长度而言位移所占的比例。
6、图1.4应变的符号使用(Epsilon),(Gamma),位移的符号使用(Delta),u,v,w等。1.2载荷,位移、应变、应力之间的相互关系只要有载荷存在就有位移、应变、应力的存在,这四种只要有其一存在就会有其他三种存在。用材料力学能够求出结构的位移、应力,这只限于简单的形状和单一载荷形式。有限元法能够在现实复杂的机械或结构和任意载荷情况下,求出位移、应变、应力,给出应变和位移能够求出应力。图1.51.3强度理论概述各种材料因强度不足引起的失效现象是不同的。塑性材料,如普通碳钢,以发生屈服现象,出现塑性变形为失效的标志。脆性材料,如铸铁,失效现象则是突然断裂。在单向受力情况下,出现塑性变形
7、时的屈服极限和发生断裂时的强度极限,可由实验测定,和可统称为失效应力。以安全系数除失效应力,便得到许用应力,于是建立强度条件 可见,在单向应力状态下,失效状态或强度条件都是以实验为基础的。实际构件危险点的应力状态往往不是单向的。实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。常用方法是把材料加工成薄壁圆筒(图1.6),在内压作用下,筒壁为二向应力状态。如再配以轴向拉力,可使两个主应力之比等于各种预定的数值。这种薄壁筒试验除作用内压和轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。此外,也还有一些实现复杂应力状态的其他实验方法。尽管如此,完全复现实际中遇到的各种复杂应力状态,并不容
8、易。况且,复杂应力状态中应力组合的方式和比值,又有各种可能。如果像单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。由于技术上的困难和工作的繁重,往往是难以实现的。解决这类问题,经常是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。图1.6事实上,尽管失效现象比较复杂,但经过归纳,强度不足引起的失效现象主 要还是屈服和断裂两种类型。同时,衡量受力和变形程度的量又有应力、应变和应变能密度等。人们在长期的生产活动中,综合分析材料的失效现象和资料,对 强度失效提出各种假说。这类假说认为,材料之所以
9、按某种方式(断裂或屈服)失效,是应力、应变或应变能密度等因素中某一因素引起的。按照这类假说,无论是简单或复杂应力状态,引起失效的因素是相同的。亦即,造成失效的原因与 应力状态无关。这类假说称为强度理论。利用强度理论,便可由简单应力状态 的实验结果,建立复杂应力状态的强度条件。 强度理论既然是推测强度失效原因的一些假说,它是否正确,适用于什么情况,必须由生产实践来检验。经常是适用于某种材料的强度理论,并不适用于另一种材料;在某种条件下适用的理论,却又不适用于另一种条件。 这里只介绍了四种常用强度理论和莫尔强度理论。这些都是在常温、静载荷下,适用于均匀、连续、各向同性材料的强度理论。当然,强度理论
10、远不止这几种。而且,现有的各种强度理论还不能说已经圆满地解决所有强度问题。这方面仍然有待发展。 前面已经提到,强度失效的主要形式有两种,即屈服与断裂。相应地,强度理论也分成两类:一类是解释断裂失效的,其中有最大拉应力理论和最大伸长线应变理论。另一类是解释屈服失效的,其中有最大切应力理论和畸变能密度理论。现依次介绍如下。1.3.1最大拉应力理论(第一强度理论) 这一理论认为最大拉应力是引起断裂的主要因素。即认为无论是什么应力状态,只要最大拉应力达到与材料性质有关的某一极限值,则材料就发生断裂。既然最大拉应力的极限值与应力状态无关,于是就可用单向应力状态确定这一极限值。单向拉伸只有(=0),而当达
11、到强度极限时发生断裂。这样,根据这一理论,无论是什么应力状态,只要最大拉应力达到就导致断裂。于是得断裂准则 将极限应力除以安全因数得许用应力,所以按第一强度理论建立的强度条件是 铸铁等脆性材料在单向拉伸下,断裂发生于拉应力最大的横截面。脆性材料的扭转也是沿拉应力最大的斜面发生断裂。这些都与最大拉应力理论相符。这一理论没有考虑其他两个应力的影响,且对没有拉应力的状态(如单向压缩、三向压缩等)也无法应用。1.3.2最大伸长线应变理论(第二强度理论) 这一理论认为最大伸长线应变是引起断裂的主要因素。即认为无论什么应力状态,只要最大伸长线应变达到与材料性质有关的某一极限值,材料即发生断裂。的极限值既然
12、与应力状态无关,就可由单向拉伸来确定。设单向拉伸直到断裂仍可用虎克定律计算应变,则拉断时伸长线应变的极限值应为。按照这一理论,任意应力状态只要达到极限值,材料就发生断裂。故得断裂准则为 1.3由广义胡克定律: 代入1.1式得断裂准则 1.4将除以安全因数得许用应力,于是按第二强度理论建立的强度条件是 1.5 石料或混凝土等脆性材料受轴向压缩时,如在试验机与试块的接触面上加添润滑剂,以减小摩擦力的影响,试块将沿垂直于压力的方向裂开。裂开的方向也就是的方向。铸铁在拉一压二向应力,且压应力较大的情况下,试验结果也与这一理论接近。不过按照这一理论,如在受压试块的压力的垂直方向再加压力,使其成为二向受压
13、,其强度应与单向受压不同。但混凝土、花岗石和砂岩的试验资料表明,两种情况的强度并无明显差别。与此相似,按照这一理论,铸铁在二向拉伸时应比单向拉伸安全,但试验结果并不能证实这一点。对这种情况,还是第一强度理论接近试验结果。1.3.3 最大切应力理论(第三强度理论) 这一理论认为最大切应力是引起屈服的主要因素。即认为无论什么应力状态,只要最大切应力达到与材料性质有关的某一极限值,材料就发生屈服。单向拉伸下,当与轴线成45的斜截面上的时(截面上的正应力为)出现屈服。可见,就是导致屈服的最大切应力的极限值。因为这一极限值与应力状态无关,任意应力状态下,只要达到就引起材料的屈服。任意应力状态下, 1.6
14、于是得屈服准则 1.7或 1.8将换为许用应力,得到按第三强度理论建立的强度条件 1.9 最大切应力屈服准则可以用几何的方式来表达。二向应力状态下,如以1和2表示两个主应力,且设和都可以表示最大或最小应力(即不采取的规定),当和符号相同时,最大切应力应为/2或/2于是最大切应力屈服准则成为 或 1.10在以和为坐标的平面坐标系中(图1.7),和符号相同应在第一和第三象限。以上两式就是与坐标轴平行的直线。当和符号不同时,最大切应力是1/2|-|,屈服准则化为|-|= 1.11 图17这是第二和第四象限中的两条斜直线。所以在平面中,最大切应力屈服准则是一个六角形。若代表某一个二向应力状态的M点在六
15、角形区域之内,则这一应力状态不会引起屈服。材料处于弹性状态。若M点在区域的边界上,则它所代表的应力状态适足以便材料开始出现屈服。最大切应力理论较为满意地解释了塑性材料的屈服现象。例如,低碳钢拉伸时,沿与轴线成45的方向出现滑移线,是材料内部沿这一方向滑移的痕迹。沿这一方向的斜面上切应力也恰为最大值。二向应力状态下,几种塑性材料的薄壁圆筒试验结果表示于图1.8中。图中以1/s和2/s为 图1.8坐标,便可把几种材料的试验数据绘于同一图中。可以看出,最大切应力屈服准则与试验结果比较吻合。代表试验数据的点落在六角形之外,说明这一理论偏于安全。 1.3.4 畸变能密度理论(第四强度理论) 这一理论认为
16、畸变能密度是引起屈服的主要因素。即认为无论什么应力状态,只要畸变能密度v。达到与材料性质有关的某一极限值,材料就发生屈服。单向拉伸下,屈服应力为,相应的畸变能密度求出为。这就是导致屈服的畸变能密度的极限值。任意应力状态下,只要畸变能密度。达到上述极限值,便引起材料的屈服。故畸变能密度屈服准则为 1.12在任意状态下,可知 1.13代入1.10式,整理后得屈服准则为: 1.14在图1.6中,上列屈服准则为一椭圆形曲线。把s。除以安全因数得许用应力,于是,按第四强度理论得到的强度条件是 1.15几种塑性材料钢、铜、铝的薄管试验资料表明,畸变能密度屈服准则与试验资料相当吻合(图1.8),比第三强度理
17、论更为符合试验结果。在纯剪切的情况下,由屈服准则(1.13)得出的结果比(1.11)的结果大15,这是两者差异最大的情况。 综合公式(1.2),(1.5),(1.9),(1.15),可把四个强度理论的强度条件写成以下统一的形式: 1.16式中称为相当应力。它由三个主应力按一定形式组合而成。按照从第一强度理论到第四强度理论的顺序,相当应力分别为 1.17 以上介绍了四种常用的强度理论。铸铁、石料、混凝土、玻璃等脆性材料,通常以断裂的形式失效,宜采用第一和第二强度理论。碳钢、铜、铝等塑性材料,通常以屈服的形式失效,宜采用第三和第四强度理论。 应该指出,不同材料固然可以发生不同形式的失效,但即使是同
18、一材料,在不同应力状态下也可能有不同的失效形式。例如,碳钢在单向拉伸下以屈服的形式失效,但碳钢制成的螺钉受拉时,螺纹根部因应力集中引起三向拉伸,就会出现断裂。这是因为当三向拉伸的三个主应力数值接近时,由屈服准则(730)或(732)看出,屈服将很难出现。又如,铸铁单向受拉时以断裂的形式失效。但如以淬火钢球压在铸铁板上,接触点附近的材料处于三向受压状态,随着压力的增大,铸铁板会出现明显的凹坑,这表明已出现屈服现象。以上例子说明材料的失效形式与应力状态有关。无论是塑性或脆性材料,在三向拉应力相近的情况下,都将以断裂的形式失效,宜采用最大拉应力理论.在三向压应力相近的情况下,都可引起塑性变形,宜采用
19、第三或第四强度理论.二、CAE的基础知识21 CAE的基本概念一项工业产品或工程设计,作为任务交给工程师时,一般应考虑确保产品性能指标、保证产品的可靠性、使用寿命和最大限度降低成本等内容。传统工程结构的分析与计算一般依据材料力学、理论力学和弹性力学所提供的公式来进行。在计算机问世以前,由于有许多简化条件,工程计算精度较低。为了保证设备的安全可靠运行,常采用加大安全系数的方法,导致结构尺寸过大,不但浪费材料,有时还会造成结构性能的降低。现代产品的设计与制造正朝着高效、高速、高精度、低成本、节省资源和高性能等方面发展,传统的计算分析方法远远无法满足要求。近20年来,随着计算机技术的发展,出现了计算
20、机辅助工程CAE(Computer Aided Engineering)这一新兴学科。采用CAE技术,即使在进行复杂的工程分析时也可无须作很多简化,并且计算速度快、精度高。常见的工程分析包括:对质量、体积、惯性力矩和强度等的计算分析;对产品的运动精度,动、静态特征等的性能分析;对产品的应力、变形、安全性及寿命的分析等。 CAE是一个很广的概念,从字面上讲它可以包括工程和制造业信息化的所有方面,其特点是以工程和科学问题为背景,建立计算模型并进行计算机仿真分析,对工程和产品进行性能与安全可靠性分析,对其未来的工作状态和运行行为进行模拟,及早发现设计中的不足,并证实未来工程、产品功能和性能的可用性与
21、可靠性。工程和制造企业的生命力在于工程和产品的创新,而实现创新的关键,除了设计思想和概念之外,最主要的技术保障,就是采用先进可靠的CAE软件。CAE软件可以分专用和通用两类,针对特定类型的工程或产品所开发的用于产品性能分析、预测和优化的软件,称为专用CAE软件;可以对多种类型的工程和产品的物理、力学性能进行分析、模拟、预测、评价和优化,以实现产品技术创新的软件,称为通用CAE软件。 CAE是早期发展起来的矩阵和有限元分析方法的延伸。计算技术是CAE技术的基础,计算机硬件和软件的发展对CAE各方面的发展有明显的影响,CAE与计算力学、计算数学、工程科学、工程管理学、现代计算技术等多个学科相关,是
22、在多学科基础上形成的一种综合性和知识密集型的信息产品。目前CAE的发展包括计算材料建模,对结构及其部件的响应,性能、破坏与使用寿命进行预测的计算方法,结构合成与优化的自动化方法等多个方面。 CAE的结构有限元分析的理论与方法的应用一般包括5步: (1)观察事物响应的物理现象:(2)建立计算模型以便对这些现象进行数值仿真; (3)发展并集合硬件和或软件来实现计算模型; (4)后处理并解释计算模型的结果; (5)利用计算结果分析并进行结构优化设计。 正确的结构计算模型的建立应基于对被模拟的物理力学现象的深刻理解,有限元方法正是这种计算模型的代表性体现。以有限元方法为基础,并以后续发展的多种数值分析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CAE 培训 课件 65
限制150内