数学:171勾股定理(2)课件(人教版八年级下).ppt





《数学:171勾股定理(2)课件(人教版八年级下).ppt》由会员分享,可在线阅读,更多相关《数学:171勾股定理(2)课件(人教版八年级下).ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、SA+SB=SCa2+b2=c2abcSASBSCabc勾股定理勾股定理注:注:前提条件:前提条件:直角三角形直角三角形根据勾股定理,在直角三根据勾股定理,在直角三 角形中已知任何两边可求角形中已知任何两边可求 第三边第三边知识知识 如果直角三角形两直角边分别为如果直角三角形两直角边分别为a,b,斜,斜边为边为c,那么,那么a2 + b2 = c2勾股定理勾股定理abcc2=a2 + b2结论变形结论变形知识知识 如果直角三角形两直角边分别为如果直角三角形两直角边分别为a,b,斜,斜边为边为c,那么,那么a2 + b2 = c2勾股定理勾股定理a2=c2 - b2 b2=c2 -a2在直角三角
2、形中,三边长分别为在直角三角形中,三边长分别为a 、 b 、 c,其中其中c为斜边为斜边1.(1)a=3,b=4,则则c= (2)a=5,b=12,则则c=2.(1)a=6,c=10,则则b= (2)b=20,c=25,则则a=3. a:b3:4,c10,则则a=,b=513815861.如图,分别以如图,分别以Rt ABC三边为边三边为边向外作三个正方形,其面积分别用向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出表示,容易得出S1、S2、S3之间有的关系式为之间有的关系式为123SSS2.如图,所有的四边形都是正方形,所有如图,所有的四边形都是正方形,所有的三角形都是直角三角形
3、,其中最大的正的三角形都是直角三角形,其中最大的正方形方形E的边长为的边长为7cm,求正方形,求正方形A,B,C,D的面积的和的面积的和.A+BC+DA+B+C+DEDCBA某人拿一根竹竿想进城,可是竹竿太长了,横竖都进不某人拿一根竹竿想进城,可是竹竿太长了,横竖都进不了城。这时,一位老人给他出了个主意,把竹竿截成两了城。这时,一位老人给他出了个主意,把竹竿截成两半半古代笑话古代笑话截竿进城截竿进城 一个门框尺寸如图所示,一块长一个门框尺寸如图所示,一块长m,宽,宽.m的薄木板能否从门框内穿过?为什么?的薄木板能否从门框内穿过?为什么?ABCD1 m2 m3m2.2m52.2362.2探究探究
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 171 勾股定理 课件 人教版八 年级

限制150内