2020年浙江省高考数学模拟试卷(解析版)【打印版】.pdf
《2020年浙江省高考数学模拟试卷(解析版)【打印版】.pdf》由会员分享,可在线阅读,更多相关《2020年浙江省高考数学模拟试卷(解析版)【打印版】.pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020 年普通高等学校招生全国统一考试(浙江卷) 数学本模拟试题卷分选择题和非选择题两部分本模拟试题卷分选择题和非选择题两部分.全卷共全卷共 4 页,选择题部分页,选择题部分 1 至至 2 页;非选择题部分页;非选择题部分3 至至 4 页页.满分满分 150 分分.考试用时考试用时 120 分钟分钟.考生注意:考生注意:1答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在 模拟试题卷和答题纸规定的位置上模拟试题卷和答题纸规定的位置上.2答题时,请按照答题纸上答题时,请按照答题纸上“注意事项注意事项”的要
2、求,在答题纸相应的位置上规范作答,在本的要求,在答题纸相应的位置上规范作答,在本 模拟试题卷上的作答一律无效模拟试题卷上的作答一律无效.参考公式:参考公式:如果事件如果事件 A,B 互斥,那么互斥,那么()( )( )P ABP AP B 如果事件如果事件 A,B 相互独立,那么相互独立,那么()( ) ( )P ABP A P B 如果事件如果事件 A 在一次试验中发生的概率是在一次试验中发生的概率是p,那么,那么 n 次独立重复试验中事件次独立重复试验中事件 A 恰好恰好发生发生 k 次的概率次的概率( )(1)(0,1,2, )kkn knnP kC ppkn台体的体积公式台体的体积公式
3、11221()3VSS SSh其中其中12,S S分别表示台体的上、下底面积,分别表示台体的上、下底面积,h表示台体的高表示台体的高柱体的体积公式柱体的体积公式VSh其中其中S表示柱体的底面积,表示柱体的底面积,h表示柱体的高表示柱体的高锥体的体积公式锥体的体积公式13VSh其中其中S表示锥体的底面积,表示锥体的底面积,h表示锥体的高表示锥体的高球的表面积公式球的表面积公式24SR球的体积公式球的体积公式343VR其中其中R表示球的半径表示球的半径选择题部分(共选择题部分(共 40 分)分)一、选择题:本大题共一、选择题:本大题共 10 小题,每小题小题,每小题 4 分,共分,共 40 分分.
4、在每小题给出的四个选项中,只有一在每小题给出的四个选项中,只有一项是符合题目要求的项是符合题目要求的.21.已知集合 P= |14xx,23Qx,则 PQ=( )A. |12xxB. |23xxC. |34xxD. |14xx【答案】B【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)PQ II故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.2.已知 aR,若 a1+(a2)i(i 为虚数单位)是实数,则 a=( )A. 1B. 1C. 2D. 2【答案】C【解析】【分析】根据复数为实数列式求解即可.【详解】因为(1)(2)aai为实数,所以202a
5、a,故选:C【点睛】本题考查复数概念,考查基本分析求解能力,属基础题.3.若实数 x,y 满足约束条件31030 xyxy ,则 z=2x+y 的取值范围是( )A. (,4B. 4,)C. 5,)D. (,) 3【答案】B【解析】【分析】首先画出可行域,然后结合目标函数的几何意义确定目标函数在何处能够取得最大值和最小值从而确定目标函数的取值范围即可.【详解】绘制不等式组表示的平面区域如图所示,目标函数即:1122yxz ,其中 z 取得最大值时,其几何意义表示直线系在 y 轴上的截距最大,z 取得最小值时,其几何意义表示直线系在 y 轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点
6、 A 处取得最小值,联立直线方程:31030 xyxy ,可得点 A 的坐标为:2,1A,据此可知目标函数的最小值为:min22 14z 且目标函数没有最大值.故目标函数的取值范围是4,.故选:B.4【点睛】求线性目标函数 zaxby(ab0)的最值,当 b0 时,直线过可行域且在 y 轴上截距最大时,z 值最大,在 y 轴截距最小时,z 值最小;当 b0 时,直线过可行域且在 y 轴上截距最大时,z 值最小,在 y轴上截距最小时,z 值最大.4.函数 y=xcosx+sinx 在区间,+的图象大致为( )A. B. C. D. 【答案】A【解析】【分析】首先确定函数的奇偶性,然后结合函数在x
7、处的函数值排除错误选项即可确定函数的图象.【详解】因为 cossinf xxxx,则 cossinfxxxxf x ,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项 CD 错误;且x时,cossin0y ,据此可知选项 B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势(3)从函数的奇偶性,判断图象的对称5性(4)从函数的特征点,排除不合要求的图象利用上述方法排除、筛选选项5.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是(
8、)A. 73B. 143C. 3D. 6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为 1,棱柱的底面为等腰直角三角形,棱柱的高为 2,所以几何体的体积为:111172 112 12232233 .故选:A6【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.6.已知空间中不过同一点的三条直线 m,n,l,则“m,n,l 在同一平面”是“m,n,l 两两相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件
9、D. 既不充分也不必要条件【答案】B【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意, ,m n l是空间不过同一点的三条直线,当, ,m n l在同一平面时,可能/ /m n l,故不能得出, ,m n l两两相交.当, ,m n l两两相交时,设,mnA mlB nlC ,根据公理2可知,m n确定一个平面,而,BmCn,根据公理1可知,直线BC即l,所以, ,m n l在同一平面.综上所述, “, ,m n l在同一平面”是“, ,m n l两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于
10、中档题.77.已知等差数列an的前 n 项和 Sn,公差 d0,11ad记 b1=S2,bn+1=Sn+2S2n,nN,下列等式不可能成立的是( )A. 2a4=a2+a6B. 2b4=b2+b6C. 2428aa aD. 242 8bb b【答案】D【解析】【分析】根据题意可得,21212222nnnnnbSaaS,而1212bSaa,即可表示出题中2468,b b b b,再结合等差数列的性质即可判断各等式是否成立【详解】对于 A,因为数列 na为等差数列,所以根据等差数列的下标和性质,由4426可得,4262aaa,A 正确;对于 B,由题意可知,21212222nnnnnbSaaS,1
11、212bSaa,234baa,478baa,61112baa,81516baa47822baa,26341112bbaaaa根据等差数列的下标和性质,由3 1177,4 1288可得26341112784=2=2bbaaaaaab,B 正确;对于 C,2224281111137222aa aadadadda dd da,当1ad时,2428aa a,C 正确;对于 D,22222478111213452169baaadaa dd, 222 8341516111125229468145b baaaaadadaa dd,2242 8112416832bb bda ddda8当0d 时,1ad,11
12、3220dadda即242 80bb b;当0d 时,1ad,113220dadda即242 80bb b,所以242 80bb b,D 不正确故选:D.【点睛】本题主要考查等差数列的性质应用,属于基础题8.已知点 O(0,0) ,A(2,0) ,B(2,0) 设点 P 满足|PA|PB|=2,且 P 为函数 y=23 4x图像上的点,则|OP|=( )A. 222B. 4 105C. 7D. 10【答案】D【解析】【分析】根据题意可知,点P既在双曲线的一支上,又在函数23 4yx的图象上,即可求出点P的坐标,得到OP的值【详解】因为| 24PAPB,所以点P在以,A B为焦点,实轴长为2,焦
13、距为4的双曲线的右支上,由2,1ca可得,222413bca ,即双曲线的右支方程为22103yxx,而点P还在函数23 4yx的图象上,所以,由2221033 4yxxyx,解得1323 32xy,即13271044OP 故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题99.已知 a,bR 且 ab0,若(xa)(xb)(x2ab)0 在 x0 上恒成立,则( )A. a0C. b0【答案】C【解析】【分析】对a分0a 与0a 两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ,所以0a 且0b,设(
14、)()()(2)f xxa xb xab,则( )f x的零点为123,2xa xb xab当0a 时,则23xx,1 0 x,要使( )0f x ,必有2aba,且0b ,即 ba,且0b ,所以0b ;当0a 时,则23xx,10 x ,要使( )0f x ,必有0b .综上一定有0b .故选:C【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题.10.设集合 S,T,SN*,TN*,S,T 中至少有两个元素,且 S,T 满足:对于任意 x,yS,若 xy,都有 xyT对于任意 x,yT,若 xy,则yxS;下列命题正确的是( )A. 若 S 有 4 个
15、元素,则 ST 有 7 个元素B. 若 S 有 4 个元素,则 ST 有 6 个元素C. 若 S 有 3 个元素,则 ST 有 4 个元素10D. 若 S 有 3 个元素,则 ST 有 5 个元素【答案】A【解析】【分析】分别给出具体的集合 S 和集合 T,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取1,2,4S ,则2,4,8T ,此时1,2,4,8ST ,包含 4 个元素,排除选项 D;若取2,4,8S ,则8,16,32T ,此时2,4,8,16,32ST ,包含 5 个元素,排除选项 C;若取2,4,8,16S ,则8,16,32,64,128T
16、,此时2,4,8,16,32,64,128ST ,包含 7 个元素,排除选项 B;下面来说明选项 A 的正确性:设集合1234,Sp ppp,且1234pppp,*1234,p pppN,则1224p pp p,且1224,p pp pT,则41pSp,同理42pSp,43pSp,32pSp,31pSp,21pSp,若11p ,则22p ,则332ppp,故322ppp即232pp,又444231ppppp,故442232ppppp,所以342pp,故232221,Sppp,此时522,pT pT,故42pS,矛盾,舍.若12p ,则32311ppppp,故322111,pppppp即3231
17、21,pppp,11又44441231ppppppp,故441331ppppp,所以441pp,故2341111,Sp ppp,此时3456711111,pppppT.若qT, 则31qSp,故131,1,2,3,4iqp ip,故31,1,2,3,4iqpi,即3456711111,qppppp,故3456711111,pppppT,此时234456711111111,STp ppppppp即ST中有 7 个元素.故 A 正确.故选:A.【点睛】 “新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于
18、对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.非选择题部分(共非选择题部分(共 110 分)分)二、填空题:本大题共二、填空题:本大题共 7 小题,共小题,共 36 分分.多空题每小题多空题每小题 6 分,单空题每小题分,单空题每小题 4 分分.11.已知数列an满足(1)=2nn na,则 S3=_【答案】10【解析】【分析】根据通项公式可求出数列 na的前三项,即可求出【详解】因为12nn na,所以1231,3,6aaa12即31231 3610Saaa 故答案为:10.【点睛】本题主要考查利用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 打印版 2020 浙江省 高考 数学模拟 试卷 解析 打印
限制150内