2022年数字摄影测量知识点总结 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年数字摄影测量知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年数字摄影测量知识点总结 .pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章绪论摄影测量与遥感的概念:摄影测量与遥感是对非接触传感器系统获得的影像及其数字表达进行记录、量测和解译,从而获得自然物体和环境的可靠信息的一门工艺、科学和技术。摄影测量与遥感的主要特点:在像片上进行量测和解译;无需接触物体本身,较少受自然和地理条件限制;可摄得瞬间的动态物体影像;像片及其它各类影像提供物体的大量几何信息和物理信息摄影测量学的三个发展阶段:模拟摄影测量(1851-1970) 利用光学 /机械投影方法实现摄影过程的反转。用两个 /多个投影器模拟摄影机摄影时的位置和姿态, 构成与实际地形表面成比例的几何模型,通过对该模型的量测得到地形图和各种专题图。解析摄影测量(1950-19
2、80) 以电子计算机为主要手段,通过对摄影像片的量测和解析计算方法的交会方式来研究和确定被摄物体的形状、大小、 位置、性质及其相互关系,并提供各种摄影测量产品的一门科学。数字摄影测量(1970-现在)基于摄影测量的基本原理,通过对所获取的数字/数字化影像进行处理,自动(半自动 )提取被摄对象用数字方式表达的几何与物理信息,从而获得各种形式的数字产品和目视化产品。摄影测量三个发展阶段的特点:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 18 页摄影测量分类:按距离远近: 航天摄影测量、航空摄影测量、地面摄影测量、近景摄影测量、显微摄影测
3、量按用途: 地形摄影测量、非地形摄影测量按处理手段 :模拟摄影测量、解析摄影测量、数字摄影测量单像摄影测量的理论基础:共线方程、共面条件摄影测量的任务:?地形测量领域各种比例尺的地形图、专题图、特种地图、正射影像地图、景观图。建立各种数据库。提供地理信息系统和土地信息系统所需要的基础数据。?非地形测量领域生物医学公安侦破古文物、古建筑建筑物变形监测军事侦察矿山工程第二章单张航摄像片解析航摄机主距:航空摄影机物镜中心至底片面的距离是固定值,常用f 表示。摄影机的主距分为:长焦距 (主距 200 mm) 中焦距 (主距 100 200mm) 短焦距 (主距 l00mm) 对应的像场角分为:常角 (
4、75以下 ) 宽角 (75 100 ) 特宽角 (100以上 ) 摄影比例尺:是指航摄像片上一线段为l 与地面上相应线段的水平距L之比。由于摄影像片有倾角,地形有起伏,所以摄影比例尺在像片上处处不相等。我们一般指的摄影比例尺,是把摄影像片当作水平像片,地面取平均高程,这时像片上的一线段 l 与地面上相应线段的水平距L之比,称为摄影比例尺1m,即HfLlm1式中, f 为航摄机主距,H 为平均高程面的航摄高度,称为航高。空中摄影 要按航摄计划要求进行。在整个摄区, 飞机要按规定的航高和设计的方向呈直线飞行,并保持各航线的相互平行。 摄影比例尺 像片重叠度 :同一条航线内相邻像片之间的影像重叠称为
5、航向重叠,重叠部分与整个像幅精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 18 页长的百分比称为重叠度,一般要求在60%以上。 相邻航线的重叠为旁向重叠,旁向重叠度保持在 24%以上。保证像片立体量测与拼接。 空间摄影基线:控制像片重叠度时,将飞机视为匀速运动,每隔一定空间距离拍摄一张像片,摄站的间距称为空间摄影基线B。 航线弯曲度 :航线弯曲度是指偏离该直线最远的像主点到该直线垂距与航带两端像主点之间的直线距离的比,一般采用百分数表示. 航线的弯曲会影响到航向重叠、旁向重叠的一致性,如果弯曲太大,则可能会产生航摄漏洞,甚至影响摄影测
6、量的作业。因此,航线弯曲度一般规定不得超过3%; 像片旋角 :像片上相邻像主点连线与同方向框标连线间的夹角称为像片旋角; 像片倾角 :空中摄影采用竖直摄影方式,即摄影瞬间摄影机的主光轴近似与地面垂直,它偏离铅垂线的夹角应小于3 度,夹角称为像片倾角。航摄像片上特殊的点、线:设地面为E,像片为P (即像平面)两平面相交于直线TT,称为 迹线 ,即 透视轴 ,平面夹角为像片倾角 。摄影中心: 影像是由地面上各点发出的光线通过航空摄影机物镜投射到底片感光层上形成的,这些光线会聚于物镜中心S,称为摄影中心。中心投影像主点:通过摄影中心S, 垂直于像平面P的直线 SO 称为主光轴, 它与像平面P 的交点
7、 o 称为像主点。 So称为航摄机的主距f。像底点: 通过摄影中心S作地平面E的铅垂线SN ,称为主垂线,主垂线 SN与像平面 P的交点 n称为像底点,与地面 E的交点 N称为地底点。 SN 称为摄影航高H。等角点: 主光轴 SoO 与主垂线SnN 所夹的角a,称为像片倾斜角。 a角的二等分线与像片交点c 称为等角点。与 E面的交点 C称为等角点的共轭点。主纵线: 通过主垂线SnN 与主光轴SoO作一平面W ,此平面称为主垂面,既垂直于像平面P, 又垂直于地面E。主垂面W与像平面P的交线 VV,称为主纵线。主垂面W与地面 E的交线 V0V0,称为摄影方向线。摄影测量常用的坐标系:像方空间坐标系
8、(描述像点的位置) 像平面坐标系像平面坐标系用以表示像点在像平面上的位置,通常采用右手坐标系,x,y 轴的选择按需要而定,在解析和数字摄影测量中,常根据框标来确定像平面坐标系,称为像框标坐标系。在摄影测量解析计算中,像点的坐标应采用以像主点为原点的像平面坐标系中的坐标。为此, 当像主点与框标连线交点不重合时,须将像框标坐标系平移至像主点。当像主点在像框标坐标系中的坐标为(x0,y0)时,则量测出的像点坐标x,y 化算到以像主点为原点的像平面坐标系中的坐标为(x x0,yy0)。像空间坐标系为了便于进行空间坐标的变换需要建立起描述像点在像空间位置的坐标系,即像空间坐标系。以摄影中心S为坐标原点,
9、x,y 轴与像平面坐标系的x, y 轴平行, z 轴与主光轴重合,形成像空间右手直角坐标系S-xyz 。像点坐标表示为(x,y,-f) 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 18 页像空间坐标系随着像片的空间位置而定,每张像片的像空间坐标系不统一。像空间辅助坐标系此坐标系的原点为摄影中心S ,坐标轴系的选择视需要而定,通常有三种选取方法。其一是取铅垂方向为Z轴,航向为X轴,构成右手直角坐标系,见图(a)。其二是以每条航线内第一张像片的像空间坐标系作为像空间辅助坐标系,见图(b)。其三是以每个像片对的左片摄影中心为坐标原点,摄
10、影基线方向为X轴,以摄影基线及左片主光轴构成的面作为XZ平面,构成右手直角坐标系,如图(c)。用 S-XYZ 表示。物方空间坐标系(描述地面点的位置) 摄影测量坐标系将像空间辅助坐标系S-XYZ沿着 Z轴反方向平移至地面点P,得到的坐标系P-XpYpZp称为摄影测量坐标系。由于它与像空间辅助坐标系平行,因此很容易由像点的像空间辅助坐标求得相应的地面点的摄影测量坐标。地面测量坐标系地面测量坐标系通常指地图投影坐标系,也就是国家测图所采用的高斯克吕格3带或 6带投影的平面直角坐标系和高程系,两者组成的空间直角坐标系是左手系用T-XtYtZt表示。摄影测量方法求得的地面点坐标最后要以此坐标形式提供给
11、用户使用。地面摄影测量坐标系由于摄影测量坐标系采用的是右手系,而地面测量坐标系采用的是左手系,这给由摄影测量坐标到地面测量坐标的转换带来了困难,为此,在摄影测量坐标系与地面测量坐标系之间建立一种过渡性的坐标系,称为地面摄影测量坐标系,用D-XtpYtpZtp 表示,其坐标原点在测区内的某一地面点上,Xtp 轴与 Xp 轴方向大致一致,但为水平,Ztp 轴铅垂。构成右手直角坐标系。 摄影测量中, 首先将摄影测量坐标转换成地面摄影测量坐标,最后再转换成地面测量坐标。航摄像片的内、外方位元素:确定航空摄影瞬间摄影中心与像片在地面设定的空间坐标系中的位置与姿态,描述这些位置和姿态的参数称为像片的方位元
12、素。内方位元素:表示摄影中心与像片之间相关位置的参数包括三个参数,即摄影中心S 到像片的垂距 (主距 )f 及像主点O 在像框标坐标系中的坐标 x0,y0。内方位元素一般视为已知。外方位元素:表示摄影中心和像片在地面坐标系中的位置和姿态参数。一张像片的外方位元素包括六个参数,其中有三个是直线元素,用于描述摄影中心的空间坐标值,另外三精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 18 页个是角元素,用于表达像片面的空间姿态。三个直线元素Xs,Ys ,Zs 摄影中心 S在地面空间坐标系中的坐标,通常选用地面摄影测量坐标系三个角元素以 y
13、轴为主轴的j-w-k 系统以 x 轴为主轴的w-j-k系统以 Z 轴为主轴的A-a-ku 系统空间直角坐标变换: 像点空间直角坐标的旋转变换是指像空间辅助坐标与像空间坐标之间的变换。共线方程: 它是摄影测量中最基本、最重要的公式。)()()()()()()()()()()()(333222333111sAsAsAsAsAsAsAsAsAsAsAsAZZcYYbXXaZZcYYbXXafyZZcYYbXXaZZcYYbXXafx式中: x,y 为以像主点为原点的像点坐标;XA,YA ,ZA 为相应地面点坐标;f 为像片主距,影像的内方位元素(x0 , y0 ),f;XS , YS ,ZS 为摄影
14、中心S的物方空间坐标;ai , bi , ci(i = 1,2,3)为影像的三个外方位角元素组成的九个方向余弦共线方程的逆算式:fcycxcfbybxbZZYYfcycxcfayaxaZZXXsAsAsAsA321321321321)()(已知像点坐标及像片的内外方位元素,还不能计算地面点的三维坐标,只有同时知道地面点的高程时, 才能确定地面点的平面位置,因此在摄影测量处理中,需要使用立体影像确定地面点三维坐标。共线条件方程的应用: 单像空间后方交会和多像空间前方交会; 解析空中三角测量光束法平差中的基本数学模型; 构成数字投影的基础; 计算模拟影像数据(已知影像内外方位元素和物点坐标求像点坐
15、标); 利用数字高程模型(DEM)与共线方程制作正射影像; 利用 DEM与共线方程进行单幅影像测图等等。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 18 页航摄像片是中心投影,它的特点是摄影光线均交于同一点S ; 地图是正射投影,所有投影光线相互平行并与投影面正交由于投影的差异,只有在地面水平(无高差 )且像片也水平(即平行地面 )时,这两种投影方无差异中心投影变换: 将倾斜摄影的像片变为水平摄影的像片,是一种平面对平面的投影变换。这种将倾斜摄影的像片变为水平摄影的像片的过程,就称为中心投影变换。像片纠正: 摄影测量中将任意倾角的像
16、片变为规定比例尺的水平像片(即规定比例尺的影像地图 )。像点位移:地面点在地面水平的水平像片上的构像与地面有起伏时或倾斜像片上的构像的点位不同,这种点位差异称为像点位移。因像片倾斜 引起的像点位移因地形起伏 引起的像点位移因物理因素 引起的像点位移摄影物镜的畸变差,大气折光,地球曲率以及底片变形等。属于一种系统误差,很难用光学机械的方法模拟改正,但可以用数学模型来描述。像片比例尺: 在航摄像片上某一线段影像的长度与地面上相应线段距离之比,就是像片上该线段的构像比例尺对于中心投影的航摄像片,只有当像片水平且地面也水平时,像片上任意线段的比例尺都相等。实际上由于存在像点位移,像片比例尺处处不等,是
17、一个近似值,称为主比例尺。HfLlm1空间后方交会:利用一定数量的地面控制点,根据共线方程, 反求像片的外方位元素,这种方法称为单张像片的空间后方交会。已知像片的内方位元素和至少三个地面点坐标及像点坐标,则可列出至少六个方程式,解求出像片六个外方位元素。在空间后方交会中,通常是在像片的四个角上选取四个或更多的地面控制点,因而要用最小二乘法平差计算。空间后方交会的求解过程:获取已知数据:从摄影资料中查取像片比例尺1m、平均航高、内方位元素x0,y0,f,从外业测量成果中, 获取控制点的地面测量坐标Xt, Yt, Zt, 并转化成地面摄影测量坐标Xtp,Ytp,Ztp 量测控制点的像点坐标:将控制
18、点标刺在像片上,利用立体坐标量测仪量测控制点的像框标坐标,并经像主点坐标改正,得到像点坐标x ,y 。确定未知数的初始值:在竖直摄影情况下,角元素的初始值为0,即 j 0w0 k00;线元素中 ,ZS0 H=mf, X S0 ,Y S0的取值可用四个角上控制点坐标的平均值,即:414141,4100itpiSitpiSYYXX计算旋转矩阵R:利用角元素的近似值计算方向余弦值,组成R阵。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 18 页逐点计算像点坐标的近似值:利用未知数的近似值按共线方程计算控制点像点坐标的近似值(x);(y)。组
19、成误差方程式:逐点计算误差方程式的系数和常数项。组成法方程式:计算法方程的系数矩阵ATA 与常数项ATL。解求外方位元素:根据法方程,解求外方位元素改正数,并与相应的近似值求和,得到外方位元素新的近似值。检查计算是否收敛:将求得的外方位元素的改正数与规定的限差比较,小于限差则计算终止;否则用新的近似值重复4-8的计算,直到满足要求为止。第三章双像解析摄影测量人体的立体视觉:单眼观察景物时,人们感觉到的仅是景物的透视像,好像一张像片一样,不能正确判断景物的远近。只有用双眼观察景物,才能判断景物的远近,得到景物的立体效应,这种现象称为人体的立体视觉。生理视差: 由于交会角的差异,使得两弧长ab 和
20、 ab不相等,其差s=ab-ab称为生理视差。生理视差是判断景物远近的根源。人造立体视觉条件:两张像片必须是在两个不同位置对同一景物摄取的立体像对;每只眼睛必须只能观察像对的一张像片;两像片上相同景物(同名像点 )的连线与眼基线应大致平行;两像片的比例尺相近(差别 15),否则需用ZOOM 系统等进行调节。双像解析摄影测量的三种方法:利用像片的 空间后方交会与前方交会来解求地面目标的空间坐标。利用立体像对的内在几何关系,进行 相对定向 ,建立与地面相似的立体模型,计算出模型点的空间坐标。再通过绝对定向 ,将模型进行平移、旋转、缩放,把模型纳入到规定的地面坐标系之中,解求出地面目标的绝对空间坐标
21、。利用 光束法 双像解析摄影测量来解求地面目标的空间坐标。这种方法将待求点与已知外业控制点同时列出误差方程式,统一进行平差解求。这种方法理论较为严密,它把前面两种方法的两种步骤合在一个整体内。三种方法的比较分析:第一种方法前交的结果依赖于空间后方交会的精度,前交过程中没有充分利用多余条件进行平差计算;第二种方法计算公式比较多,最后的点位精度取决于相对定向和绝对定向的精度,用这种方法的解算结果不能严格表达一幅影像的外方位元素;第三种方法的理论最严密、精度最高,待定点的坐标是完全按最小二乘法原理解求出来的。立体像对的前方交会:精选学习资料 - - - - - - - - - 名师归纳总结 - -
22、- - - - -第 7 页,共 18 页这种由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。现已知两张像片的内、外方位元素, 设想将像片按内外方位元素值置于摄影时的位置,显然同名射线S1a1与 S2a2必然交于地面点A。空间前方交会的计算步骤为:由已知的外方位角元素及像点的坐标,计算像空间辅助坐标;由外方位线元素,计算摄影基线分量Bx,By, Bz;计算投影系数N1,N2;最后由前方交会公式计算地面点的地面摄影测量坐标。由于N1 和 N2 已经求出,计算地面坐标时 YA应取平均值,是为了消除相对定向中存在的残差的影响。22211121YNYY
23、NYYssA双像解析计算的空间后交前交方法:野外像片控制测量在重叠部分四角,找出四个明显地物点,作为四个控制点。在野外用普通测量的方法测算出四个控制点的地面测量坐标XtYtZt。用立体坐标量测仪量测像点的坐标像片在仪器上归心定向后,测出四个控制点的像片坐标(x1,y1)与(x2,y2),然后测出所有需要解求的地面点的像点坐标(x1,y1)和(x2,y2)。空间后方交会计算像片外方位元素根据计算机中事先编制好的程序,按要求输入控制点的地面坐标及相应的像点坐标,对两张像片各自进行空间后方交会,计算各自的六个外方位元素Xs1,Ys1,Zs1,j1,w1,k1和Xs2,Ys2,Zs2,j2,w2,k2
24、 。空间前方交会计算未知点地面坐标1)用各自像片的角元素,计算出左、右像片的方向余弦值,组成旋转矩阵R1与 R2。2)根据左、右像片的外方位线元素计算摄影基线分量Bx,By,Bz 121212sszssyssxZZBYYBXXB3)逐点计算像点的像空间辅助坐标:4)计算点投影系数:fyxRZYX111111fyxRZYX222222精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 18 页12211121221221ZXZXXBZBNZXZXXBZBNzxzx5)计算未知点的地面摄影测量坐标:222111222111222111sstps
25、stpsstpZZNZZNZYYNYYNYXXNXXNX6)重复 35 完成所有点地面坐标的计算。相对定向: 用解析计算的方法解求相对定向元素的过程,称为解析法相对定向。由于不涉及像片的绝对位置,因此不需控制点。相对定向元素:用于描述两张像片相对位置和姿态关系的参数,称为相对定向元素。像片在选定的像空间辅助坐标系中的位置(摄影中心S的坐标)和姿态(像片的姿态角,用j,w,k 表示)。连续像对相对定向:是以左方像片为基准,求出右方像片相对于左方像片的相对方位元素。(以左片的像空间坐标系作为像空间辅助坐标系)bx 只决定模型的大小,不影响模型的建立,因此可以给定一固定值,不需求解。相对定向元素为5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年数字摄影测量知识点总结 2022 数字 摄影 测量 知识点 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内