《2022年2022年集合知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年集合知识点 .pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、集合的基础知识一、重点知识归纳及讲解1集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素集合中的元素具有以下的特性确定性:任给一元素可确定其归属即给定一个集合,任何一个对象是不是这个集合的元素也就确定了. 例如,给出集合 1,2,3,4 ,它只有 1、2、3、4四个元素,其他对象都不是它的元素;而“ 所有的好人 ” 、“ 视力比较差的全体学生” 、“ 我国的所有小河流” 就不能视为集合,因为组成它们的对象是不能确定的. 互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有 1 ,
2、1,2 ,而必须写成 1 ,2. 无序性:集合中的元素间是无次序关系的.例如, 1,2,3与3,2,1表示同一个集合 . (2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素 .若a是集合 A的元素,就说 a属于集合 A,记作 aA.不含任何元素的集合叫做空集 ,记作 . 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 11 页 - - - - - - - - - (3)集合的分类:有限集与无限集. (4)集合的表示法:列举法、描述法和
3、图示法. 列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集. 描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来常用于表示无限集. 使用描述法时,应注意六点:写清集合中元素的代号;说明该集合中元素的性质;不能出现未被说明的字母;多层描述时,应当准确使用“ 且” ,“ 或” ;所有描述的内容都要写在大括号内;用于描述的语句力求简明、确切. 图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示 . 如: A=1 ,2,3,4 例1、设集合 A=a ,a
4、+b, a+2b,B=a,ac,ac2 ,且A=B ,求实数 c值分析 :欲求 c值,可列关于 c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,( 2)a+b= ac2且a+2b=ac两种情况名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 11 页 - - - - - - - - - 解析:(1)a+b=ac且a+2b= ac2,消去 b得: a+ ac2-2ac=0 a=0时,集 B中三元素均为零,根据集
5、合元素互异性舍去a=0 c2-2c+1=0,即 c=1,但 c=1时,B中的三个元素也相同,舍去c=1,此时无解(2)a+b= ac2且a+2b=ac,消去 b得: 2ac2-ac-a=0 a=0时,集 B中三元素均为零,根据集合元素互异性舍去a=02c2-c-1=0,即c=1或,但 c=1时,B中的三个元素也相同,舍去c=1,点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真(5)常用数集及专用记号(1)非负整数集(或自然数集)N=0 ,1,2,(2)正整数集 N*(或 N)=1 ,2,3,(3)整数集 Z=0
6、 ,?1,?2,(4)有理数集 Q= 整数与分数 (5)实数集 R= 数轴上的点所对应的数. 强调:实数集不可记为R 或 实数集 ,0 ,0,空集 . 强调:排除 0和负数的数集也可表示为R*、Z*、Q*或R、Z、Q2基本运算名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 11 页 - - - - - - - - - 1. 交集(1)定义:由所有属于集合A且属于集合 B的元素所组合的集合叫A与B的交集记作,即,且 (2)交集的图示上图阴影部分表示集合A与B的交集(3)交集
7、的运算律,2. 并集(1)定义:由所有属于集合A或属于集合 B的元素所组成的集合,记作,即,或 (2)并集的图示以上阴影部分表示集合A与B的并集(3)并集的运算律,3、补集(1)定义:设 S是一个集合, A是S的一个子集,由 S中所有不属于 A的元素组成的集合,叫做 S中子集 A的补集(或余集).记作,即 CSA=(2)补集的图示4、常用性质AA=A ,A=,AB=BA,ABA, ABB名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 11 页 - - - - - - -
8、- - AA=A ,A=A ,AB=BA,ABA,ABB,例2、 集合, 且 , AU, BU, 且4, 5 ,1 ,2,3 ,6,7,8,求集合 A和B分析: 利用集合图示较为直观解: 由4 ,5,则将 4,5写在中,由1,2,3,则将 1,2,3写在集 A中,由6 ,7,8 ,则将 6,7,8写在 A、B之外,由与中均无 9,10,则 9,10在B中,故A=1 ,2,3,4,5,B=4 ,5,9,105、容斥原理:有限集A的元素个数记作 card(A).对于两个有限集 A,B,有card(AB)= card(A)+card(B)- card(A B) 二、难点知识剖析1、要注意区分一些容易
9、混淆的符号(1) 与的区别:表示元素与集合之间的关系,例如 1N,-1N等;表示集合与集合之间的关系,例如NR,等(2)a与a 的区别:一般在, a表示一个元素, a 而表示只有一个元素a的集合例如, 00,11,2,3 等,不能写成 0=0 ,11,2,3 ,11,2,3 (3)0 与的区别:是含有一个元素0的集合, 是不含任何元素的集合,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 11 页 - - - - - - - - - 因此 0 但不能写成 =0 , 0 例
10、3、已知集合 M=x|x3,集合 P=x|x2,设,则下列关系式中正确的一个是()A、PMB、aM C、PMD、a3P 解析 :集合 M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用 “ 包含 ” ,“ 不包含 ” 来确定,而对 a与集合 M、P的关系只能用 “ 属于” ,“ 不属于” 来确定,比较实数的大小,易判断 C正确 . 小结 :正确使用集合的符号是正确分析、解答问题的关键2理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围如 yR|y=表示的为函数 y=中y的取值范围,故yR|y=yR|y; 而xR|y=表示y=的x的
11、取值范围,故 xR|y=R (2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式BA中,易漏掉 B=的情况例4、 设A=,B=(1)若 AB=B,求的值;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 11 页 - - - - - - - - - (2)若 AB=B,求的值分析:明确 AB=B和A B=B的含义,根据问题的需要,将AB=B和AB=B转化为等价
12、的关系式:和,是解决本题的关键解析 :首先化简集合 A,得 A=-4 ,0 (1)由于 A B=B,则有可知集合 B或为空集 ,或只含有根 0或-4若 B=,由得若,代入得:,当时,B=,合题意当时, B=,也符合题意若,代入得:,当时,中已讨论,合题意当时, B=不合题意由、得,(2)因为 AB=B,所以,又A=-4 ,0,而 B至多只有两个根,因此应有A=B 由( 1)知,【点评】:一般对于 AB=B和AB=B这种类型的问题, 都要注意转化为等价的关系式:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - -
13、- - - - - 第 7 页,共 11 页 - - - - - - - - - 和,且在包含关系中,注意不要漏掉B=的情况并且当 A、B中的元素的个数相同时,还存在或的情况时,只有 A=B 这一种情况子集(1)子集定义:一般地,对于两个集合A与B,如果集合 A的任何一个元素都是集合 B的元素,我们就说集合A包含于集合 B,或集合 B包含集合 A。记作:? 读作: A包含于 B或B包含 A 当集合 A不包含于集合 B,或集合 B不包含集合 A时,则记作: A B或B A性质:(任何一个集合是它本身的子集)(空集是任何集合的子集)【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?【解疑】
14、不能把 A是B的子集解释成 A是由 B中部分元素所组成的集合因为 B的子集也包括它本身,而这个子集是由B的全体元素组成的空集也是B的子集,而这个集合中并不含有B中的元素 由此也可看到, 把A是B的子集解释成A是由 B的部分元素组成的集合是不确切的(2)集合相等:一般地,对于两个集合A与B,如果集合 A的任何一个元素都是集合B的元素,同时集合 B的任何一个元素都是集合A的元素, 我们就说集合 A等于集合B,记作 A=B 。例:,可见,集合,是指 A、B的所有元素完全相同名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理
15、- - - - - - - 第 8 页,共 11 页 - - - - - - - - - (3)真子集:对于两个集合A与B,如果,并且,我们就说集合 A是集合 B的真子集,记作:(或),读作 A真包含于 B或B真包含 A。【思考】能否这样定义真子集:“ 如果A 是B的子集,并且 B中至少有一个元素不属于A,那么集合 A叫做集合 B的真子集 ”集合 B同它的真子集 A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合 A,B【提问】(1) 写出数集 N,Z,Q,R的包含关系,并用文氏图表示。(2) 判断下列写法是否正确A? A? ? A A 性质:(1)空集是任何非空集合的真子集。若A ,
16、且 A,则A;(2)如果,则例1? 写出集合的所有子集,并指出其中哪些是它的真子集解:集合的所有的子集是,其中,是的真子集【注意】( 1)子集与真子集符号的方向。? (2)易混符号“” 与“” :元素与集合之间是属于关系;集合与集合之间是包含关系。如R,1 1 ,2,3 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 11 页 - - - - - - - - - 0 与:0 是含有一个元素 0的集合,是不含任何元素的集合。? 如:0 。不能写成=0 ,0 例3? 判断下列
17、说法是否正确,如果不正确,请加以改正(1)表示空集;(2)空集是任何集合的真子集;(3)不是;(4)的所有子集是;(5)如果且,那么 B必是 A的真子集;(6)与不能同时成立解:(1)不表示空集,它表示以空集为元素的集合,所以(1)不正确;(2)不正确空集是任何非空集合的真子集;(3)不正确与表示同一集合;(4)不正确的所有子集是;(5)正确( 6)不正确当时,与能同时成立例4? 用适当的符号(,)填空:(1);(2);(3);(4)设,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 11 页 - - - - - - - - - 则A? B? C解:( 1)0 ? 0 ?;( 2),;(3),? ;(4)A,B,C均表示所有奇数组成的集合,ABC名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 11 页 - - - - - - - - -
限制150内