自考线性代数经管类讲义.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《自考线性代数经管类讲义.docx》由会员分享,可在线阅读,更多相关《自考线性代数经管类讲义.docx(120页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、自考04184线性代数(经管类)讲义自考高数线性代数课堂笔记第一章 行列式线性代数学的核心内容是:探讨线性方程组的解的存在条件, 解的结构以及解的求法。所用的基本工具是矩阵,而行列式是探讨矩阵的很有效的工具之一。行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科, 乃至在其他许多学科(例如计算机科学, 经济学, 管理学等)都是必不行少的。1.1行列式的定义(一)一阶, 二阶, 三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。留意:在线性代数中,符号不是确定值。例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对
2、角线上的数的积之差。(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较困难,为了扶植大家驾驭三阶行列式的计算公式,我们可以接受下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列, 第二列。我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。例如:(1)=159+267+348-357-168-249=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上
3、三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,答疑编号10010101:针对该题提问解因为所以8-3a=0,时例2当x取何值时, 答疑编号10010102:针对该题提问解:解得0x9所以当0x1): 答疑编号10010307:针对该题提问解将行列式按第一列绽开,得 (简化的过程就是消阶,次方也应削减,为(N-1)等 例12计算范德蒙德(VanderMonde)行列式: 答疑编号10010308:针对该题提问(第一行乘(-X1)加到第二行上;第二行乘(-X1)加到第三行上)例13 计算 答疑编
4、号10010309:针对该题提问(这是个定律) 例14计算 (解题规律:每行或是每列中的和是一样的,故每行或是每列都乘“1”加到第一行或是第一列上去,再把这个数当公因数提取,形成有一行或是列全为“1”的行列式,然后再化简)答疑编号10010310:针对该题提问=(x+4a)(x-a)4 1.4克拉默法则由定理1.2.1和定理1.3.1合并有或 (一)二元一次方程组(方程1, 2左右同乘以一个数,上下对减) 由a22*-a12*得由a11-a21得 令 =D =D1=D2则有 A是常数项当D0时,二元一次方程组有唯一解(二)三元一次方程组 令叫系数行列式, , 由D中的A11+A21+A31得
5、即 由D中的A12+A22+A32得即 由D中的A13+A23+A33得即 当D0时,三元一次方程组有唯一解一般地,有下面结果定理(克拉默法则) 在n个方程的n元一次方程组(1)中,若它的系数行列式0则n元一次方程组有唯一解。推论:在n个方程的n元一次齐次方程组(2)中(1)若系数行列式D0,方程组只有零解(2)若系数行列式D=0则方程组(2)除有零解外,还有非零解(不证)例在三元一次齐次方程组中,a为何值时只有零解,a为何值时有非0解。答疑编号10010401:针对该题提问解: =2a-6+3-4-(-9)-a=a+2(1)a-2时,D0,只有零解(2)a=-2时 ,D=0 ,有非零解。 本
6、章考核内容小结(一)知道一阶,二阶,三阶,n阶行列式的定义知道余子式,代数余子式的定义(二)知道行列式按一行(列)的绽开公式(三)熟记行列式的性质,会用绽开公式或将行列式化为三角形的方法计算行列式重点是三阶行列式的计算和各行(列)元素之和相同的行列式的计算(四)知道克拉默法则的条件和结论第二章 矩阵矩阵是线性代数学的一个重要的基本概念和数学工具,是探讨和求解线性方程组的一个特殊有效的工具;矩阵在数学与其他自然科学, 工程技术中,以及经济探讨和经济工作中处理线性经济模型时,也都是一个特殊重要的工具。本章探讨矩阵的加, 减法,数乘,乘法,矩阵的转置运算,矩阵的求逆,矩阵的初等变换,矩阵的秩和矩阵的
7、分块运算等问题。最终初步探讨矩阵与线性方程组的问题。2.1矩阵的概念定义2.1.1由mn个数aij(i=1,2,m;j=1,2,n)排成一个m行n列的数表 用大小括号表示称为一个m行n列矩阵。矩阵的含义是,这mn个数排成一个矩形阵列。其中aij称为矩阵的第i行第j列元素(i=1,2,m;j=1,2,n),而i称为行标,j称为列标。第i行与第j列的变叉位置记为(i,j)。通常用大写字母A,B,C等表示矩阵。有时为了标明矩阵的行数m和列数n,也可记为A=(aij)mn或(aij)mn或Amn当m=n时,称A=(aij)nn为n阶矩阵,或者称为n阶方阵。n阶方阵是由n2个数排成一个正方形表,它不是一
8、个数(行列式是一个数),它与n阶行列式是两个完全不同的概念。只有一阶方阵才是一个数。一个n阶方阵A中从左上角到右下角的这条对角线称为A的主对角线。n阶方阵的主对角线上的元素a11,a22,ann,称为此方阵的对角元。在本课程中,对于不是方阵的矩阵,我们不定义对角元。元素全为零的矩阵称为零矩阵。用Omn或者O(大写字)表示。特殊,当m=1时,称=(a1,a2,an)为n维行向量。它是1n矩阵。当n=1时,称为m维列向量。它是m1矩阵。向量是特殊的矩阵,而且它们是特殊重要的特殊矩阵。例如,(a,b,c)是3维行向量,是3维列向量。几种常用的特殊矩阵:1.n阶对角矩阵形如或简写为(那不是A,念“尖”
9、)的矩阵,称为对角矩阵,对角矩阵必需是方阵。 例如,是一个三阶对角矩阵,也可简写为。2.数量矩阵当对角矩阵的主对角线上的元素都相同时,称它为数量矩阵。n阶数量矩阵有如下形式:或。(标了角标的就是N阶矩阵,没标就不知是多少的)特殊,当a=1时,称它为n阶单位矩阵。n阶单位矩阵记为En或In,即或在不会引起混淆时,也可以用E或I表示单位矩阵。n阶数量矩阵常用aEn或aIn表示。其含义见2.2节中的数乘矩阵运算。3.n阶上三角矩阵与n阶下三角矩阵形如的矩阵分别称为上三角矩阵和下三角矩阵。对角矩阵必需是方阵。一个方阵是对角矩阵当且仅当它既是上三角矩阵,又是下三角矩阵。4.零矩阵 (可以是方阵也可以不是
10、方阵)2.2矩阵运算本节介绍矩阵的加法, 减法, 数乘, 乘法和转置等基本运算。只有在对矩阵定义了一些有理论意义和实际意义的运算后,才能使它成为进行理论探讨和解决实际问题的有力工具。2.2.1矩阵的相等(同)定义2.2.1设A=(aij)mn,B=(bij)kl,若m=k,n=l且aij=bij,i=1,2,m;j=1,2,n,则称矩阵A与矩阵B相等,记为A=B。由矩阵相等的定义可知,两个矩阵相等指的是,它们的行数相同,列数也相同,而且两个矩阵中处于相同位置(i,j)上的一对数都必需对应相等。特殊,A=(aij)mn=Oaij=0,i=1,2,m;j=1,2,n。留意行列式相等与矩阵相等有本质
11、区分,例如因为两个矩阵中(1,2)位置上的元素分别为0和2。但是却有行列式等式 (因为行列式是数,矩阵是表,表要求表里的每一个都一样)2.2.2矩阵的加, 减法定义2.2.2设A=(aij)mn和B=(bij)mn,是两个mn矩阵。由A与B的对应元素相加所得到的一个mn矩阵,称为A与B的和,记为A+B,即A+B=(aij+ bij)mn。即若则当两个矩阵A与B的行数与列数分别相等时,称它们是同型矩阵。只有当两个矩阵是同型矩阵时,它们才可相加。例如留意:(1)矩阵的加法与行列式的加法有重大区分例如 (阶数相同,全部的行(列)中除某一行(列)不相同外,其余的行都一样才可以相加,方法是除了这两个不同
12、的行(列)相加外,其它的不变。)(2)阶数大于1的方阵与数不能相加。(阶数大于1它就是一个表,不是一个数了)若A=(aij)为n阶方阵,n1,a为一个数,则A+a无意义!但是n阶方阵A=(aij)mn与数量矩阵aEn可以相加: (把数转化为数量矩阵aEn就可以想加了)由定义2.2.2知矩阵的加法满足下列运算律:设A,B,C都是mn矩阵,O是mn零矩阵,则(1)交换律A+B=B+A.(乘法没有交换律)(2)结合律(A+B)+C=A+(B+C).(3)A+O=O+A=A.(4)消去律A+C=B+CA=B.2.2.3数乘运算(矩阵与数不能相加,但是可能想乘)定义2.2.3对于随意一个矩阵A=(aij
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自考 线性代数 经管 讲义
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内