二数学-二次根式-知识点+练习题--详细.docx
《二数学-二次根式-知识点+练习题--详细.docx》由会员分享,可在线阅读,更多相关《二数学-二次根式-知识点+练习题--详细.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次根式的知识点汇总知识点一: 二次根式的概念形如的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必需留意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2. 二次根式无意义的条件:因负数没有算术平方根,所以当a0时,没有意义。知识点三:二次根式的非负性表示a的算术平方根,也就是说,是一个非负数,即0。注:因为二次根式表示a的算术平方根,而正数的算术平方
2、根是正数,0的算术平方根是0,所以非负数的算术平方根是非负数,即0,这特性质也就是非负数的算术平方根的性质,和肯定值、偶次方类似。这特性质在解答题目时应用较多,如假设,那么00;假设,那么00;假设,那么00。知识点四:二次根式的性质文字语言表达为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:假设,那么,如:,.知识点五:二次根式的性质文字语言表达为:一个数的平方的算术平方根等于这个数的肯定值。注:1、化简时,肯定要弄明白被开方数的底数a是正数还是负数,假设是正数或0,那么等于a本身,即;假设a是负数,那么等于a的
3、相反数,即;2、中的a的取值范围可以是随意实数,即不管a取何值,肯定有意义;3、化简时,先将它化成,再依据肯定值的意义来进展化简。知识点六:及的异同点1、不同点:及表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但及都是非负数,即,。因而它的运算的结果是有差异的,而2、一样点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:同类二次根式二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。知识点八:二次根式的运算: 1二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二次 根式 知识点 练习题 详细
限制150内