汇总小学阶段奥数知识点1.docx
《汇总小学阶段奥数知识点1.docx》由会员分享,可在线阅读,更多相关《汇总小学阶段奥数知识点1.docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、汇总小学阶段奥数学问点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等。1.、小升初奥数学问点(年龄问题的三大特征)两个人的年龄差是不变的;两个人的年龄是同时增加或者同时削减的;两个人的年龄的倍数是发生变更的;2、小升初奥数学问点(植树问题总结):根本类型:在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树3、鸡兔同笼问题根本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那局部置换出来;根本思路:假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):假设后,发生了和题目条件不同的差,
2、找出这个差是多少;每个事物造成的差是固定的,从而找出出现这个差的缘由;再根据这两个差作适当的调整,消去出现的差。根本公式:把全部鸡假设成兔子:鸡数(兔脚数总头数总脚数)(兔脚数鸡脚数)把全部兔子假设成鸡:兔数(总脚数一鸡脚数总头数)(兔脚数一鸡脚数)关键问题:找出总量的差及单位量的差。4、奥数学问点(盈亏问题)盈亏问题根本概念:确定量的对象,根据某种标准分组,产生一种结果:根据另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量根本思路:先将两种安排方案进展比拟,分析由于标准的差异造成结果的变更,根据这个关系求出参与安排的总份数,然后根据
3、题意求出对象的总量根本题型:一次有余数,另一次缺乏;根本公式:总份数(余数缺乏数)两次每份数的差当两次都有余数;根本公式:总份数(较大余数一较小余数)两次每份数的差当两次都缺乏;根本公式:总份数(较大缺乏数一较小缺乏数)两次每份数的差根本特点:对象总量和总的组数是不变的。关键问题:确定对象总量和总的组数。 5、小升初奥数学问点(牛吃草问题)牛吃草问题根本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的缘由,即可确定草的生长速度和总草量。根本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。根本公式:生长量=(较长时间长时间牛头数
4、-较短时间短时间牛头数)(长时间-短时间);总草量=较长时间长时间牛头数-较长时间生长量;6、小升初奥数学问点(平均数问题)平均数根本公式:平均数=总数量总份数总数量=平均数总份数总份数=总数量平均数平均数=基准数每一个数及基准数差的和总份数根本算法: 出总数量以及总份数,利用根本公式进展计算.基准数法:根据给出的数之间的关系,确定一个基准数;一般选及全部数比拟接近的数或者中间数为基准数;以基准数为标准,求全部给出数及基准数的差;再求出全部差的和;再求出这些差的平均数;最终求这个差的平均数和基准数的和,就是所求的平均数,详细关系见根本公式7 、小升初奥数学问点(周期循环数)周期循环及数表规律周
5、期现象:事物在运动变更的过程中,某些特征有规律循环出现。周期:我们把连续两次出现所经过的时间叫周期。关键问题:确定循环周期。闰 年:一年有366天;年份能被4整除;假如年份能被100整除,则年份必需能被400整除;平 年:一年有365天。 年份不能被4整除;假如年份能被100整除,但不能被400整除; 8、小升初奥数学问点(抽屉原理)抽屉原理抽屉原则一:假如把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种状况:4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1视察上面四种放物体的方式,
6、我们会发觉一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。抽屉原则二:假如把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:k=n/m +1个物体:当n不能被m整除时。k=n/m个物体:当n能被m整除时。理解学问点:X表示不超过X的最大整数。例4.351=4;0.321=0;2.9999=2;关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后根据抽屉原则进展运算。9、奥数学问点(定义新运算)小升初奥数学问点(数列求和)数列求和等差数列:在一列数中,随意相邻两个数的差是确定的,这样的一列数,就叫做等差数列。根本概念:首项:等差数列
7、的第一个数,一般用a1表示;项数:等差数列的全部数的个数,一般用n表示;公差:数列中随意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示根本思路:等差数列中涉及五个量:a1 ,an, d, n, sn,通项公式中涉及四个量,假如己知其中三个,就可求出第四个;求和公式中涉及四个量,假如己知其中三个,就可以求这第四个。根本公式:通项公式:an = a1+(n1)d;通项首项(项数一1) 公差;数列和公式:sn,= (a1+ an)n2;数列和(首项末项)项数2;项数公式:n= (an- a1)d1;项数=(末项-首项)公差
8、1;公差公式:d =(ana1)(n1);公差=(末项首项)(项数1);关键问题:确定已知量和未知量,确定运用的公式10、加法乘法原理和几何计数加法原理:假如完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2. +mn种不同的方法。关键问题:确定工作的分类方法。根本特征:每一种方法都可完成任务。乘法原理:假如完成一件任务须要分成n个步骤进展,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1m2. m
9、n种不同的方法。关键问题:确定工作的完成步骤。根本特征:每一步只能完成任务的一局部。直线:一点在直线或空间沿确定方向或相反方向运动,形成的轨迹。直线特点:没有端点,没有长度。线段:直线上随意两点间的间隔 。这两点叫端点。线段特点:有两个端点,有长度。射线:把直线的一端无限延长。射线特点:只有一个端点;没有长度。数线段规律:总数1+2+3+(点数一1);数角规律=1+2+3+(射线数一1);数长方形规律:个数=长的线段数宽的线段数:数长方形规律:个数=11+22+33+行数列数11 、小升初奥数学问点(质数及合数)质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。合数:一
10、个数除了1和它本身之外,还有别的约数,这个数叫做合数。质因数:假如某个质数是某个数的约数,那么这个质数叫做这个数的质因数。分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。分解质因数的标准表示形式:N= ,其中a1、a2、a3an都是合数N的质因数,且a1a2a3an。求约数个数的公式:P=(r1+1)(r2+1)(r3+1)(rn+1)互质数:假如两个数的最大公约数是1,这两个数叫做互质数。12 、小升初奥数学问点(约数及倍数)约数和倍数:若整数a可以被b整除,a叫做b的倍数,b就叫做a的约数。公约数:几个数公有的约数
11、,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。2、几个数的最大公约数都是这几个数的约数。3、几个数的公约数,都是这几个数的最大公约数的约数。4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数根本方法:1、分解质因数法:先分解质因数,然后把一样的因数连乘起来。2、短除法:先找公有
12、的约数,然后相乘。3、辗转相除法:每一次都用除数和余数相除,可以整除的那个余数,就是所求的最大公约数。公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。12的倍数有:12、24、36、48;18的倍数有:18、36、54、72;那么12和18的公倍数有:36、72、108;那么12和18最小的公倍数是36,记作12,18=36;最小公倍数的性质:1、两个数的随意公倍数都是它们最小公倍数的倍数。2、两个数最大公约数及最小公倍数的乘积等于这两个数的乘积。求最小公倍数根本方法:1、短除法求最小公倍数;2、分解质因数的方法13 、小升初奥数学问点(数的整除)一、
13、根本概念和符号:1、整除:假如一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“”,所以的符号“”;二、整除推断方法:1. 能被2、5整除:末位上的数字能被2、5整除。2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。4. 能被3、9整除:各个数位上数字的和能被3、9整除。5. 能被7整除:末三位上数字所组成的数及末三位以前的数字所组成数之差能被7整除。逐次去掉最终一位数字并减去末位数字的2倍后能
14、被7整除。6. 能被11整除:末三位上数字所组成的数及末三位以前的数字所组成的数之差能被11整除。奇数位上的数字和及偶数位数的数字和的差能被11整除。逐次去掉最终一位数字并减去末位数字后能被11整除。7. 能被13整除:末三位上数字所组成的数及末三位以前的数字所组成的数之差能被13整除。逐次去掉最终一位数字并减去末位数字的9倍后能被13整除。三、整除的性质:1. 假如a、b能被c整除,那么(a+b)及(a-b)也能被c整除。2. 假如a能被b整除,c是整数,那么a乘以c也能被b整除。3. 假如a能被b整除,b又能被c整除,那么a也能被c整除。4. 假如a能被b、c整除,那么a也能被b和c的最小
15、公倍数整除。14 、小升初奥数学问点(余数及其应用)小升初奥数学问点(余数问题)余数的性质:余数小于除数。若a、b除以c的余数一样,则c|a-b或c|b-a。a及b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。a及b的积除以c的余数等于a除以c的余数及b除以c的余数的积除以c的余数余数、同余及周期一、同余的定义:若两个整数a、b除以m的余数一样,则称a、b对于模m同余。已知三个整数a、b、m,假如m|a-b,就称a、b对于模m同余,记作ab(mod m),读作a同余于b模m。二、同余的性质:自身性:aa(mod m);对称性:若ab(mod m),则ba(mod m);
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汇总 小学 阶段 知识点
限制150内