汇总小学阶段奥数知识点.docx
《汇总小学阶段奥数知识点.docx》由会员分享,可在线阅读,更多相关《汇总小学阶段奥数知识点.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021年小学奥数学问点梳理前言小学奥数学问点梳理,对于学而思的小学奥数大纲建立尤其必要,不过,对于学问点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的小学数学奥林匹克、中国少年报社主编的华杯赛教材、华杯赛集训指南以及学而思的寒假班系列教材和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系其第十七为解题方法聚集,可补充相应杂题,原那么上简明扼要,努力刻画小学奥数学问的主树干。 概述一、 计算1 四那么混合运算繁分数 运算依次 分数、小数混合运算技巧一般而言: 加减运算中,能化成有限小数的统一以小数形式; 乘除运算中,统一以分数形式。带分数及假分数的
2、互化繁分数的化简2 简便计算凑整思想基准数思想裂项及拆分提取公因数商不变性质变更运算依次 运算定律的综合运用 连减的性质 连除的性质 同级运算移项的性质 增减括号的性质 变式提取公因数形如:3 估算求某式的整数部分:扩缩法4 比较大小 通分a. 通分母b. 通分子 跟“中介比 利用倒数性质假设,那么cba.。形如:,那么。5 定义新运算6 特殊数列求和运用相关公式: 1+2+3+4n-1+n+n-1+4+3+2+1=n二、 数论1 奇偶性问题奇奇=偶 奇奇=奇奇偶=奇 奇偶=偶偶偶=偶 偶偶=偶2 位值原那么形如:=100a+10b+c3 数的整除特征:整除数特 征2末尾是0、2、4、6、83
3、各数位上数字的和是3的倍数5末尾是0或59各数位上数字的和是9的倍数11奇数位上数字的和及偶数位上数字的和,两者之差是11的倍数4和25末两位数是4或25的倍数8和125末三位数是8或125的倍数7、11、13末三位数及前几位数的差是7或11或13的倍数4 整除性质 假如c|a、c|b,那么c|(ab)。 假如bc|a,那么b|a,c|a。 假如b|a,c|a,且b,c=1,那么bc|a。 假如c|b,b|a,那么c|a. a个连续自然数中必恰有一个数能被a整除。5 带余除法一般地,假如a是整数,b是整数b0,那么确定有另外两个整数q和r,0rb,使得a=bq+r当r=0时,我们称a能被b整除
4、。当r0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商亦简称为商。用带余数除式又可以表示为ab=qr, 0rb a=bq+r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 p2.pk7. 约数个数及约数和定理设自然数n的质因子分解式如n= p1 p2.pk那么:n的约数个数:d(n)=(a1+1)(a2+1).(ak+1)n的全部约数和:1+P1+P1+p11+P2+P2+p21+Pk+Pk+pk8. 同余定理 同余定义:假设两个整数a,b被自然数m除有一样的余数,那么称a,b对于模m同余,用式子表示为ab(mod m) 假设两个数a,b除
5、以同一个数c得到的余数一样,那么a,b的差确定能被c整除。两数的和除以m的余数等于这两个数分别除以m的余数和。两数的差除以m的余数等于这两个数分别除以m的余数差。两数的积除以m的余数等于这两个数分别除以m的余数积。9完全平方数性质平方差: A-B=A+BA-B,其中我们还得留意A+B, A-B同奇偶性。约数:约数个数为奇数个的是完全平方数。 约数个数为3的是质数的平方。质因数分解:把数字分解,使他满意积是平方数。平方和。10孙子定理中国剩余定理11辗转相除法12数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、 几何图形1 平面图形多边形的内角和N边形的内角和=(N-2)180等积变形
6、位移、割补 三角形内等底等高的三角形 平行线内等底等高的三角形 公共部分的传递性 极值原理变及不变三角形面积及底的正比关系 S1S2 =ab ; S1S2=S4S3 或者S1S3=S2S4相像三角形性质份数、比例 ; S1S2=a2A2S1S3S2S4= a2b2abab ; S=a+b2燕尾定理SABG:SAGCSBGE:SGECBE:EC;SBGA:SBGCSAGF:SGFCAF:FC;SAGC:SBCGSADG:SDGBAD:DB;差不变原理知5-2=3,那么圆点比方点多3。隐含条件的等价代换 例如弦图中长短边长的关系。组合图形的思索方法 化整为零 先补后去 正反结合2 立体图形规那么立
7、体图形的外表积和体积公式不规那么立体图形的外表积整体观照法体积的等积变形 水中浸放物体:V升水=V物 测啤酒瓶容积:V=V空气+V水三视图及绽开图 最短线路及绽开图形态问题染色问题 几面染色的块数及“芯、棱长、顶点、面数的关系。四、 典型应用题1 植树问题开放型及封闭型间隔及株数的关系2 方阵问题外层边长数-2=内层边长数外层边长数-14=外周长数外层边长数2-中空边长数2=实面积数3 列车过桥问题车长+桥长=速度时间车长甲+车长乙=速度和相遇时间车长甲+车长乙=速度差追刚好间列车及人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和相遇时间车长=速度差追刚好间4 年龄问题差不变原理5 鸡
8、兔同笼假设法的解题思想6 牛吃草问题原有草量=牛吃速度-草长速度时间7 平均数问题8 盈亏问题分析差量关系9 和差问题10 和倍问题11 差倍问题12 逆推问题 复原法,从结果入手13 代换问题 列表消元法 等价条件代换五、 行程问题1 相遇问题路程和=速度和相遇时间2 追及问题路程差=速度差追刚好间3 流水行船顺水速度=船速+水速逆水速度=船速-水速船速=顺水速度+逆水速度2水速=顺水速度-逆水速度24 屡次相遇线型路程: 甲乙共行全程数=相遇次数2-1环型路程: 甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程共行全程数5 环形跑道6 行程问题中正反比例关系的应用路程确定,速度
9、和时间成反比。速度确定,路程和时间成正比。时间确定,路程和速度成正比。7 钟面上的追及问题。 时针和分针成直线; 时针和分针成直角。8 结合分数、工程、和差问题的一些类型。9 行程问题时常运用“时间倒流和“假定看成的思索方法。六、 计数问题1 加法原理:分类枚举2 乘法原理:排列组合3 容斥原理: 总数量=A+B+C-(AB+AC+BC)+ABC 常用:总数量=A+B-AB4 抽屉原理:至多至少问题5 握手问题在图形计数中应用广泛 角、线段、三角形, 长方形、梯形、平行四边形 正方形七、 分数问题1 量率对应2 以不变量为“13 利润问题4 浓度问题倒三角原理例:5 工程问题 合作问题 水池进
10、出水问题6 按比例安排八、 方程解题1 等量关系 相关联量的表示法例: 甲 + 乙 =100 甲乙=3 x 100-x 3x x解方程技巧 恒等变形2 二元一次方程组的求解代入法、消元法3 不定方程的分析求解以系数大者为试值角度4 不等方程的分析求解九、 找规律周期性问题 年月日、星期几问题 余数的应用数列问题 等差数列通项公式 an=a1+(n-1)d求项数: n=求和: S= 等比数列求和: S= 裴波那契数列策略问题 抢报30 放硬币最值问题 最短线路a.一个字符阵组的分线读法 最优化问题十、 算式谜1 填充型2 替代型3 填运算符号4 横式变竖式5 结合数论学问点十一、 数阵问题1 相
11、等和值问题2 数列分组知行列数,求某数知某数,求行列数3 幻方奇阶幻方问题:杨辉法 罗伯法偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法十二、 二进制1 二进制计数法 二进制位值原那么 二进制数及十进制数的相互转化 二进制的运算2 其它进制十六进制十三、 一笔画1 一笔画定理:一笔画图形中只能有0个或两个奇点;两个奇点进必需从一个奇点进,另一个奇点出;2 哈密尔顿圈及哈密尔顿链3 多笔画定理笔画数=十四、 逻辑推理1 等价条件的转换2 列表法3 对阵图竞赛问题,涉及体育竞赛常识十五、 火柴棒问题1 挪动火柴棒变更图形个数2 挪动火柴棒变更算式,使之成立十六、 智力问题1 打破思维定势2 某
12、些特殊情境问题十七、 解题方法结合杂题的处理1 代换法2 消元法3 倒推法4 假设法5 反证法6 极值法7 设数法8 整体法9 画图法10 列表法11 解除法12 染色法13 构造法14 配对法15 列方程 方程 不定方程 不等方程另外补充说明:在华校课本六年级中有“棋盘上的数学三讲,其实是找规律类型,学问点涉及棋盘格,几何,数论等,属于综合性问题。汇总小学阶段奥数学问点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等。1.、小升初奥数学问点年龄问题的三大特征两个人的年龄差是不变的;两个人的年龄是同时增加或者同时削减的;两个人的年龄的倍数是发生变更的;和差倍问题:和差问题
13、和倍问题差倍问题条件几个数的和及差几个数的和及倍数几个数的差及倍数公式适用范围两个数的和,差,倍数关系公式(和差)2=较小数较小数差=较大数和较小数=较大数(和差)2=较大数较大数差=较小数和较大数=较小数和(倍数1)=小数小数倍数=大数和小数=大数差(倍数-1)=小数小数倍数=大数小数差=大数关键问题求出同一条件下的和及差和及倍数差及倍数和差倍问题 和差问题 和倍问题 差倍问题 条件 几个数的和及差 几个数的和及倍数 几个数的差及倍数 公式适用范围 两个数的和,差,倍数关系 公式 (和差)2=较小数 较小数差=较大数 和较小数=较大数 (和差)2=较大数 较大数差=较小数 和较大数=较小数
14、和(倍数1)=小数 小数倍数=大数 和小数=大数 差(倍数-1)=小数 小数倍数=大数 小数差=大数 关键问题 求出同一条件下的 和及差 和及倍数 差及倍数 2、小升初奥数学问点植树问题总结:根本类型:在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树根本公式 棵数=段数1 棵距段数=总长 棵数=段数1 棵距段数=总长 棵数=段数 棵距段数=总长 关键问题 确定所属类型,从而确定棵数及段数的关系 3、鸡兔同笼问题根本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;根本思路:假设,即假设某种现
15、象存在甲和乙一样或者乙和甲一样:假设后,发生了和题目条件不同的差,找出这个差是多少;每个事物造成的差是固定的,从而找出出现这个差的缘由;再根据这两个差作适当的调整,消去出现的差。根本公式:把全部鸡假设成兔子:鸡数兔脚数总头数总脚数兔脚数鸡脚数把全部兔子假设成鸡:兔数总脚数一鸡脚数总头数兔脚数一鸡脚数关键问题:找出总量的差及单位量的差。4、奥数学问点盈亏问题盈亏问题根本概念:确定量的对象,根据某种标准分组,产生一种结果:根据另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量根本思路:先将两种安排方案进展比较,分析由于标准的差异造成结果的变
16、更,根据这个关系求出参与安排的总份数,然后根据题意求出对象的总量基此题型:一次有余数,另一次缺乏;根本公式:总份数余数缺乏数两次每份数的差当两次都有余数;根本公式:总份数较大余数一较小余数两次每份数的差当两次都缺乏;根本公式:总份数较大缺乏数一较小缺乏数两次每份数的差根本特点:对象总量和总的组数是不变的。关键问题:确定对象总量和总的组数。 5、小升初奥数学问点牛吃草问题牛吃草问题根本思路:假设每头牛吃草的速度为“1份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的缘由,即可确定草的生长速度和总草量。根本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。根本公式:1
17、生长量=较长时间长时间牛头数-较短时间短时间牛头数长时间-短时间;2总草量=较长时间长时间牛头数-较长时间生长量; 3吃的天数原有草量牛头数草的生长速度;4牛头数原有草量吃的天数草的生长速度。6、小升初奥数学问点平均数问题平均数根本公式:平均数=总数量总份数总数量=平均数总份数总份数=总数量平均数平均数=基准数每一个数及基准数差的和总份数根本算法: 出总数量以及总份数,利用根本公式进展计算.基准数法:根据给出的数之间的关系,确定一个基准数;一般选及全部数比较接近的数或者中间数为基准数;以基准数为标准,求全部给出数及基准数的差;再求出全部差的和;再求出这些差的平均数;最终求这个差的平均数和基准数
18、的和,就是所求的平均数,详细关系见根本公式7 、小升初奥数学问点周期循环数周期循环及数表规律周期现象:事物在运动变更的过程中,某些特征有规律循环出现。周期:我们把连续两次出现所经过的时间叫周期。关键问题:确定循环周期。闰 年:一年有366天;年份能被4整除;假如年份能被100整除,那么年份必需能被400整除;平 年:一年有365天。 年份不能被4整除;假如年份能被100整除,但不能被400整除;8、小升初奥数学问点抽屉原理抽屉原理抽屉原那么一:假如把n+1个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种状况:
19、4=4+0+0 4=3+1+0 4=2+2+0 4=2+1+1视察上面四种放物体的方式,我们会发觉一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。抽屉原那么二:假如把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:k=n/m +1个物体:当n不能被m整除时。k=n/m个物体:当n能被m整除时。理解学问点:X表示不超过X的最大整数。例4.351=4;0.321=0;2.9999=2;关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后根据抽屉原那么进展运算。9、奥数学问点定义新运算根本概念:定义一种新的运算符号,这个新的运算符号包含
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汇总 小学 阶段 知识点
限制150内