初一数学上册知识点总结及练习()模板.docx
《初一数学上册知识点总结及练习()模板.docx》由会员分享,可在线阅读,更多相关《初一数学上册知识点总结及练习()模板.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初一数学(上)学问点代数初步学问 1. 代数式:用运算符号 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)2.几个重要的代数式:(m、n表示整数) (1)a及b的平方差是: a22 ; a及b差的平方是:()2 ; (2)若a、b、c是正整数,则两位整数是: 10 ,则三位整数是:10010;(3)若m、n是整数,则被5除商m余n的数是: 5 ;偶数是:2n ,奇数是:21;三个连续整数是: 1、n、1 ;有理数 1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;不肯定是负数
2、,也不肯定是正数;p不是有理数;(2)有理数的分类: (3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a0 a是正数或0 a是非负数;a 0 a是负数或0 a是非正数.2数轴:数轴是规定了原点、正方向、单位长度的一条直线.3相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)留意: 的相反数是;的相反数是;的相反数是; (3)相反数的和为0 0 a、b互为相反数. 4.肯定值:(1)正数的肯定值是其本身,0的肯定值
3、是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点分开原点的间隔 ;(2) 肯定值可表示为:或 ;肯定值的问题常常分类探讨;(3) ; ;(4) 是重要的非负数,即0;留意:, .5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数恒久比0大,负数恒久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;若 a0,那么的倒数是;倒数是本身的数是1;若1 a、b互为倒数;若1 a、b互为负倒数.7. 有理数
4、加法法则:(1)同号两数相加,取一样的符号,并把肯定值相加;(2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值;(3)一个数及0相加,仍得这个数.8有理数加法的运算律:(1)加法的交换律: ;(2)加法的结合律:()().9有理数减法法则:减去一个数,等于加上这个数的相反数;即().10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把肯定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数确定.11 有理数乘法的运算律:(1)乘法的交换律:;(2)乘法的结合律:()();(3)乘法的安排律:a()
5、 .12有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数,.13有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: ()或(a )()n , 当n为正偶数时: ()n 或 ()()n .14乘方的定义:(1)求一样因式积的运算,叫做乘方;(2)乘方中,一样的因式叫做底数,一样因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a20;若a20 00;15科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的准确位:一个近似数,四舍五入
6、到那一位,就说这个近似数的准确到那一位.17.有效数字:从左边第一个不为零的数字起,到准确的位数止,全部数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最终加减;留意:怎样算简洁,怎样算准确,是数学计算的最重要的原则.19.特别值法:是用符合题目要求的数代入,并验证题设成立而进展猜测的一种方法,但不能用于证明.整式的加减 1单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2单项式的系数及次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中全部字母指数的和,叫单项式的次数.3多项
7、式:几个单项式的和叫多项式.4多项式的项数及次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;留意:(若a、b、c、p、q是常数)2和x2是常见的两个二次三项式.5整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为: .6同类项:所含字母一样,并且一样字母的指数也一样的单项式是同类项.7合并同类项法则:系数相加,字母及字母的指数不变.8去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9整式的加减:整式的加减,事实上是在去括号的
8、根底上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).留意:多项式计算的最终结果一般应当进展升幂(或降幂)排列.一元一次方程 1等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.2方程:含未知数的等式,叫方程.3方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:“方程的解就能代入”!4一元一次方程:只含有一个未知数,且未知数的次数是1,并且含未知数项的系数不是零的整
9、式方程是一元一次方程.7一元一次方程的标准形式: 0(x是未知数,a、b是已知数,且a0).8一元一次方程的最简形式: (x是未知数,a、b是已知数,且a0).9一元一次方程一般步骤:整理方程 。去分母 去括号 移项 合并同类项 系数化为1 (检验方程的解).10列方程解应用题的常用公式:周长、面积、体积问题:C圆=2R,S圆=R2,C长方形=2(),S长方形, C正方形=4a,S正方形2,S环形=(R22)长方体 ,V正方体3,V圆柱=R2h ,V圆锥=R2h.习题:1、若 ;若 2比拟的大小: ; , ; 。3计算:(1); (2); (3); (4) ; (5); (5) (6);(7)
10、 ; (8)17(本题10分)计算(1) (2)解: 解:18(本题10分)解方程(1) (2) 解: 解:23(本题10分)关于x的方程及的解互为相反数(1)求m的值;(6分)(2)求这两个方程的解(4分)解:相交线及平行线一、学问网络构造二、学问要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特别状况。2、在同一平面内,不相交的两条直线叫 平行线 。假如两条直线只有 一个 公共点,称这两条直线相交;假如两条直线 没有 公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角。邻补角的性质: 邻补
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 上册 知识点 总结 练习 模板
限制150内