初三圆知识点及定理.docx
《初三圆知识点及定理.docx》由会员分享,可在线阅读,更多相关《初三圆知识点及定理.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆学问点及定理一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的间隔 等于定长的点的集合; 2、圆的外部:可以看作是到定点的间隔 大于定长的点的集合; 3、圆的内部:可以看作是到定点的间隔 小于定长的点的集合轨迹形式的概念:1、圆:到定点的间隔 等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;补充2、垂直平分线:到线段两端间隔 相等的点的轨迹是这条线段的垂直平分线也叫中垂线; 3、角的平分线:到角两边间隔 相等的点的轨迹是这个角的平分线; 4、到直线的间隔 相等的点的轨迹是:平行于这条直线且到这条直线的间隔 等于定长的两条直线; 5、到两条平行线间隔 相等的点的轨迹是:平行于这两条平
2、行线且到两条直线间隔 都相等的一条直线。二、点及圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线及圆的位置关系1、直线及圆相离 无交点;2、直线及圆相切 有一个交点;3、直线及圆相交 有两个交点;四、圆及圆的位置关系外离图1 无交点 ;外切图2 有一个交点 ;相交图3 有两个交点 ;内切图4 有一个交点 ;内含图5 无交点 ; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧; 2弦的垂直平分线经过圆心,并且平分弦所对的两条弧; 3平分弦所对的一条弧的直径,垂直平分弦,并且平分
3、弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中随意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,那么可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等
4、的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中,四边形是内接四边形 九、切线的性质及断定定理1切线的断定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不行 即:且
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 知识点 定理
限制150内