热学第三版答案.docx
《热学第三版答案.docx》由会员分享,可在线阅读,更多相关《热学第三版答案.docx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 温度1-1 在什么温度下,下列一对温标给出相同的读数:(1)华氏温标与摄氏温标;(2)华氏温标与热力学温标;(3)摄氏温标与热力学温标?解:(1) 当 时,即可由 ,解得 故在 时 (2)又 当 时 则即 解得: 故在 时, (3) 若 则有 自不待言此方程无解,因此不存在 的状况。1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。 (1)用温度计测量300K的温度时,气体的压强是多少? (2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知: (1) (2) 1-3 用定容气体温度计测得冰点的志向气体温度为273.15K,试求温
2、度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。解:依据 已知 冰点 1-4 用定容气体温度计测量某种物质的沸点。 原来测温泡在水的三相点时,其中气体的压强 ;当测温泡浸入待测物质中时,测得的压强值为 ,当从测温泡中抽出一些气体,使 减为200mmHg时,重新测得 ,当再抽出一些气体使 减为100mmHg时,测得 .试确定待测沸点的志向气体温度.解:依据 从志向气体温标的定义: 依以上两次所测数据,作T-P图看趋势得出 时,T约为400.5K亦即沸点为400.5K. 题1-4图1-5 铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。当温度计的测温泡与待测物体接
3、触时,铂电阻的阻值为90.28欧姆。试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。解:依题给条件可得 则 故 1-6 在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变更 ,即,并规定冰点为 ,汽化点为 。设 与 分别表示在冰点与汽化点时X的值,试求上式中的常数a与b。解: 由题给条件可知 由(2)-(1)得将(3)代入(1)式得1-7 水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。(1) 在室温 时,水银柱的长度为多少?(2) 温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,
4、试求溶液的温度。解:设水银柱长 与温度 成线性关系: 当 时, 代入上式 当 , (1) (2) 1-8 设肯定容气体温度计是按摄氏温标刻度的,它在冰点与汽化点时,其中气体的压强分别为 与 。(1)当气体的压强为 时,待测温度是多少?(2)当温度计在沸腾的硫中时(硫的沸点为 ),气体的压强是多少?解:解法一 设P与t为线性关系: 由题给条件可知:当 时有当 时得: 由此而得(1) (2) 时解法二 若设t与P为线性关系 利用第六题公式可得:由此可得:(1) 时 (2) 时1-9 当热电偶的一个触点保持在冰点,另一个触点保持任一摄氏温度t时,其热电动势由下式确定: 式中 题1-9题(1) 题1-
5、9图(2)题1-9图(3)(1) 试计算当 与 时热电动势 的值,并在此范围内作 图。(2) 设用 为测温属性,用下列线性方程来定义温标 : 并规定冰点为 ,汽化点为 ,试求出a与b的值,并画出 图。(3) 求出与 与 对应的 值,并画出 图(4) 试比较温标t与温标 。解:令 (1) (2) 在冰点时 ,汽化点 ,而 , 已知解得: (3) 当 时 当 时 当 时 当 时 (4)温标t与温标 只有在汽化点与沸点具有相同的值, 随 线性变更,而t不随 线性变更,所以用 作测温属性的 温标比t温标优越,计算便利,但日常所用的温标是摄氏温标,t与 虽非线性变更,却能干脆反应熟知的温标,因此各有所长
6、。1-10 用L表示液体温度计中液柱的长度。定义温标 与L之间的关系为 。式中的a, b为常数,规定冰点为 ,汽化点为 。设在冰点时液柱的长度为 ,在汽化点时液柱的长度,试求 到 之间液柱长度差以与 到 之间液柱的长度差。解:由题给条件可得: (1) (2)解联立方程(1)(2)得: 则 1-11 定义温标 与测温属性X之间的关系为 ,其中K为常数。(1)设X为定容淡薄气体的压强,并假定在水的三相点为 ,试确定温标 与热力学温标之间的关系。(2)在温标 中,冰点与汽化点各为多少度?(3)在温标 中,是否存在0度?解:(1)依据志向气体温标 ,而X=P (1)由题给条件,在三相点时 代入式代入(
7、1)式得: (2)(2)冰点 代入(2)式得汽化点 代入(2)式得(3)若 ,则 从数学上看, 不小于0,说明 有0度存在,但事实上,在此温度下,淡薄汽体可能已液化,0度不能实测。1-12 一立方容器,每边长20cm其中贮有 , 的气体,当把气体加热到 时,容器每个壁所受到的压力为多大?解:对肯定质量的志向气体其状态方程为因 ,而 故 1-13 肯定质量的气体在压强保持不变的状况下,温度由 升到 时,其体积将变更百分之几?解:依据方程 则体积变更的百分比为 1-14 一氧气瓶的容积是 ,其中氧气的压强是 ,规定瓶内氧气压强降到 时就得充气,以免混入其他气体而需洗瓶,今有一玻璃室,每天需用 氧气
8、 ,问一瓶氧气能用几天。解:先作两点假设,(1)氧气可视为志向气体,(2)在运用氧气过程中温度不变。则:由 可有 每天用掉的氧气质量为 瓶中剩余氧气的质量为 天1-15 水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为 时,它的读数只有 。此时管内水银面到管顶的距离为 。问当此气压计的读数为 时,实际气压应是多少。设空气的温度保持不变。题1-15图解:设管子横截面为S,在气压计读数为 与 时,管内空气压强分别为 与 ,依据静力平衡条件可知,由于T, M不变依据方程 有 ,而 1-16 截面为 的粗细匀称的U形管,其中贮有水银,高度如图1-16所示。今将左侧的上端
9、封闭年,将其右侧与真空泵相接,问左侧的水银将下降多少?设空气的温度保持不变,压强 题1-16图解:依据静力平均条件,右端与大气相接时,左端的空气压强为大气压;当右端与真空泵相接时,左端空气压强为 (两管水银柱高度差)设左端水银柱下降 常数 即 整理得 : (舍去)1-17 图1-17所示为一粗细匀称的J形管,其左端是封闭的,右侧与大气相通,已知大气压强为 ,今从J形管右侧灌入水银,问当右侧灌满水银时,左侧水银柱有多高,设温度保持不变,空气可看作志向气体。题1-17图解:设从J形管右侧灌满水银时,左侧水银柱高为h。假设管子的直径与 相比很小,可忽视不计,因温度不变,则对封闭在左侧的气体有: 而
10、(S为管的截面积)解得: (舍去) 1-18 如图1-18所示,两个截面相同的连通管,一为开管,一为闭管,原来开管内水银下降了 ,问闭管内水银面下降了多少?设原来闭管内水银面上空气柱的高度R与大气压强为 ,是已知的。 题1-18图 解:设截面积为S,原闭管内气柱长为R大气压为P闭管内水银面下降后,其内部压强为。对闭管内肯定质量的气体有: 以水银柱高度为压强单位:取正值,即得 1-19 一端封闭的玻璃管长 ,贮有空气,气体上面有一段长为 的水银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再除去玻璃片,因而使一部分水银漏出。当大气压为 时,六在管内的水银柱有多长?解
11、: 题1-19图设在正立状况下管内气体的压强为 ,以水银柱高度表示压强,倒立时,管内气体的压强变为 ,水银柱高度为 由于在倒立过程温度 不变, 解之并取 的值得 1-20 求氧气在压强为 ,温度为 时的密度。解:已知氧的密度 1-21 容积为 的瓶内贮有氢气,因开关损坏而漏气,在温度为 时,气压计的读数为 。过了些时候,温度上升为 ,气压计的读数未变,问漏去了多少质量的氢。解:当 时,容器内氢气的质量为: 当 时,容器内氢气的质量为: 故漏去氢气的质量为1-22 一打气筒,每打一次可将原来压强为 ,温度为 ,体积 的空气压缩到容器内。设容器的容积为 ,问须要打几次气,才能使容器内的空气温度为
12、,压强为 。解:打气后压强为: ,题上未说原来容器中的气体状况,可设原来容器中没有空气,设所需打气次数为 ,则得: 次1-23 一气缸内贮有志向气体,气体的压强, 摩尔体积与温度分别为 , 与 ,现将气缸加热,使气体的压强与体积同时增大。设在这过程中,气体的压强 与摩尔体积 满意下列关系式: 其中 为常数(1)求常数 ,将结果用 , 与普适气体常数 表示。(2)设 ,当摩尔体积增大到 时,气体的温度是多高?解:依据 志向气体状态方程 与过程方程 有(1) (2) 而 ,则 1-24 图1-24为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水银的瓶R缓缓上提,水银进入容器B,
13、将B中的气体与待测容器中的气体隔开。接着上提瓶R,水银就进入两根相同的毛细管 与 内,当 中水银面的高度差 ,设容器的容积为 ,毛细管直径 ,求待测容器中的气压。 题1-24图解:设 管体积 ,当水银瓶R上提时,水银上升到虚线处,此时B内气体压强与待测容器的气体压强相等。以B内气体为探讨对象,当R接着上提后, 内气体压强增大到 ,由于温度可视为不变,则依据玻-马定律,有 由于 1-25 用图1-25所示的容积计测量某种轻矿物的操作步骤与试验数据如下:(1)打开活拴K,使管AB与罩C与大气相通。上度移动D,使水银面在n处。(2)关闭K,往上举D,使水银面达到m处。这时测得B, D两管内水银面的高
14、度差 。(3)打开K,把400g的矿物投入C中使水银面重密与对齐,关闭K。(4)往上举D,使水银面重新到达m处,这时测得B, D两管内水银面的高度差 已知罩C与AB管的容积共为 ,求矿物的密度。题1-25图解:设容器B的容积为 ,矿物的体积为 , 为大气压强,当打开K时,罩内压强为 ,步骤(2)中罩内压强为 ,步骤(4)中,罩内压强为 ,假设操作过程中温度可视不变,则依据玻-马定律知未放矿石时: 放入后: 解联立方程得 1-26 一抽气机转速 转/分,抽气机每分钟能够抽出气体 ,设容器的容积 ,问经过多少时间后才能使容器的压强由 降到 。解:设抽气机每转一转时能抽出的气体体积为 ,则 当抽气机
15、转过一转后,容器内的压强由 降到 ,忽视抽气过程中压强的变更而近似认为抽出压强为 的气体 ,因而有 ,当抽气机转过两转后,压强为当抽气机转过n转后,压强 设当压强降到 时,所需时间为 分,转数 1-27 按重量计,空气是由 的氮, 的氧,约 的氩组成的(其余成分很少,可以忽视),计算空气的平均分子量与在标准状态下的密度。解:设总质量为M的空气中,氧, 氮, 氩的质量分别为 。氧, 氮, 氩的分子量分别为 。空气的摩尔数则空气的平均摩尔质量为即空气的平均分子量为28.9。空气在标准状态下的密度1-28 把 的氮气压入一容积为 的容器,容器中原来已充溢同温同压的氧气。试求混合气体的压强与各种气体的
16、分压强,假定容器中的温度保持不变。解:依据道尔顿分压定律可知 又由状态方程 且温度, 质量M不变。1-29 用排气取气法收集某种气体(见图1-29),气体在温度为 时的饱与蒸汽压为 ,试求此气体在 干燥时的体积。 题1-29图解:容器内气体由某气体两部分组成,令某气体的压强为 则其总压强 干燥时,即气体内不含水汽,若某气体的压强也为 其体积V,则依据PV=恒量(T, M肯定)有 1-30 通常称范德瓦耳斯方程中 一项为内压强,已知范德瓦耳斯方程中常数a,对二氧化碳与氢分别为 与 ,试计算这两种气体在 ,0.01与0.001时的内压强, 解:依据内压强公式 ,设 内压强为 的内压强 。当 时,当
17、 时当 时1-31 一摩尔氧气,压强为 ,体积为 ,其温度是多少?解:由于体积 较小,而压强较大,所以利用状态方程则必定出现较大的误差,因此我们用范氏方程求解式中 1-32 试计算压强为 ,密度为 的氧气的温度,已知氧气的范德瓦耳斯常数为 , 。解:设氧气的质量为 ,所占的体积为 ,则有 依据范氏方程 则有 代入数据得: 1-33 用范德瓦耳斯方程计算密闭于容器内质量 的二氧化碳的压强。已知容器的容积 ,气体的温度 。试计算结果与用志向气体状态方程计算结果相比较。已知二氧化碳的范德瓦斯常数为 , 。解:(1)应用范氏方程计算:得出: 代入数据计算得:(2)应用志向气体状态方程:小结:应用两种方
18、程所得的P值是不同的,用范氏方程所得结果小于志向气体方程所得的P值。其缘由是由于志向气体状态方程忽视分子间作用力与气体分子本身所占的体积,所以使得计算的压强大于真实气体的压强。第二章 气体分子运动论的基本概念2-1 目前可获得的极限真空度为10-13mmHg的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27。解: 由P=n K T可知n =P/KT= =3.21109(m 3)注:1mmHg=1.33102N/m22-2 钠黄光的波长为5893埃,即5.89310-7m,设想一立方体长5.89310-7m, 试问在标准状态下,其中有多少个空气分子。解:P=nKT PV=NK
19、T其中T=273K P=1.013105N/m2N=个2-3 一容积为11.2L的真空系统已被抽到1.010-5mmHg的真空。为了提高其真空度,将它放在300的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.010-2mmHg,问器壁原来吸附了多少个气体分子。解:设烘烤前容器内分子数为N。,烘烤后的分子数为N。依据上题导出的公式PV = NKT则有: 因为P0与P1相比差103数量,而烘烤前后温度差与压强差相比可以忽视,因此 与 相比可以忽视个2-4 容积为2500cm3的烧瓶内有1.01015个氧分子,有4.01015个氮分子与3.310-7g的氩气。设混合气体的温度为150,求混
20、合气体的压强。解:依据混合气体的压强公式有 PV=(N氧+N氮+N氩)KT其中的氩的分子个数: N氩=(个) P=(1.0+4.0+4.97)1015Pa mmHg2-5 一容器内有氧气,其压强P=1.0atm,温度为t=27,求(1) 单位体积内的分子数:(2) 氧气的密度;(3) 氧分子的质量;(4) 分子间的平均距离;(5) 分子的平均平动能。解:(1) P=nKT n=m-3(2) (3)m氧=g(4) 设分子间的平均距离为d,并将分子看成是半径为d/2的球,每个分子的体积为v0。V0=cm(5)分子的平均平动能为:(尔格)2-6 在常温下(例如27),气体分子的平均平动能等于多少ev
21、在多高的温度下,气体分子的平均平动能等于1000ev解:(1)(J)leV=1.610-19J(ev)(2)T=2-7 一摩尔氦气,其分子热运动动能的总与为3.75103J,求氦气的温度。:解: 2-8 质量为10Kg的氮气,当压强为1.0atm,体积为7700cm3 时,其分子的平均平动能是多少?解: 而 J2-9 质量为50.0g,温度为18.0的氦气装在容积为10.0L的封闭容器内,容器以v=200m/s的速率作匀速直线运动。若容器突然静止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度与压强将各增大多少? 解:由于容器以速率v作定向运动时,每一个分子都具有定向运动,其动能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 热学 第三 答案
限制150内