导数知识点归纳及应用.docx
《导数知识点归纳及应用.docx》由会员分享,可在线阅读,更多相关《导数知识点归纳及应用.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、导数学问点归纳及应用学问点归纳一、相关概念1导数的概念函数y=f(x),假设自变量x在x处有增量,那么函数y相应地有增量=f(x+)f(x),比值叫做函数y=f(x)在x到x+之间的平均变更率,即=。假设当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f(x)或y|。即f(x)=。说明:(1)函数f(x)在点x处可导,是指时,有极限。假设不存在极限,就说函数在点x处不行导,或说无导数。(2)是自变量x在x处的变更量,时,而是函数值的变更量,可以是零。由导数的定义可知,求函数y=f(x)在点x处的导数的步骤: 求函数的增量=f(x+)f(x); 求
2、平均变更率=; 取极限,得导数f(x)=。例:设f(x)= x|x|, 则f( 0)= .解析: f( 0)=02导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x)处的切线的斜率是f(x)。相应地,切线方程为yy=f/(x)(xx)。例:在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是( )A3B2C1D0解析:切线的斜率为又切线的倾斜角小于,即故解得:故没有坐标为整数的点3.导数的物理意义假设物体运动的规律是s=s(t),那么该物体在时刻t的瞬间速度v=(t)。 假设物体运
3、动的速度随时间的变更的规律是v=v(t),则该物体在时刻t的加速度a=v(t)。例。汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图像可能是( )stOAstOstOstOBCD答:A。练习:已知质点M按规律做直线运动(位移单位:cm,时间单位:s)。(1) 当t=2,时,求;(2) 当t=2,时,求;(3) 求质点M在t=2时的瞬时速度。答案:(1)8.02(2)8.002;(3)8二、导数的运算1根本函数的导数公式: (C为常数)例1:下列求导运算正确的是 ( )A(x+ B(log2x)= C(3x)=3xlog3e D (x2cosx
4、)=-2xsinx 解析:A错,(x+ B正确,(log2x)= C错,(3x)=3xln3 D错,(x2cosx)=2xcosx+ x2(-sinx)例2:设f0(x) sinx,f1(x)f0(x),f2(x)f1(x),fn1(x) fn(x),nN,则f2019(x)( )Asinx Bsinx Ccosx Dcosx解析:f0(x) sinx,f1(x)f0(x)=cosx,f2(x)f1(x)= -sinx,f3(x)f2(x)= -cosx, f4(x) f3(x)=sinx,循环了 则f2019(x)f1(x)cosx2导数的运算法则法则1:两个函数的和(或差)的导数,等于这两
5、个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:(v0)。例:设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x0时,0.且g(3)=0.则不等式f(x)g(x)0的解集是 ( )A (-3,0)(3,+) B (-3,0)(0, 3) C (-,- 3)(3,+) D (-,- 3)(0, 3)解析:当x0时,0 ,即 当x0时,f(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 知识点 归纳 应用
限制150内