高中数学知识点2.docx
《高中数学知识点2.docx》由会员分享,可在线阅读,更多相关《高中数学知识点2.docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 集合与函数概念一、集合1、集合的含义与表示一般地,我们把讨论对象统称为元素。把一些元素组成的总体叫做集合(简称为集)。通常用大写字母A,B,C,D,表示集合,用小写拉丁字母a,b,c,表示元素。2.集合中元素的特征确定性:给定的集合,它的元素必需是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了。如,“中国的直辖市”构成一个集合,北京、上海、天津、重庆在这个集合中,杭州、南京、广州不在这个集合中。“身材较高的人”不能构成集合;因为组成它的元素是不确定的。互异性:一个给定集合中的元素是互不一样的(或说是互异的),即,集合中的元素是不重复出现的。一样元素、重复元素,
2、不管多少,只能算作该集合的一个元素。无序性:不考虑元素之间的依次只要元素完全一样,就认为是同一个集合。3、集合相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。4、元素与集合的关系假如a是集合A的元素,就说a属于集合A,记作aA;假如a不是集合A中的元素,就说a不属于集合A,记作aA。5、常见的数集及记法全体非负整数组成的集合称为非负整数集(或自然数集),记作N;全部正整数组成的集合称为正整数集(在自然数集中解除0的集合),记N*或N+;全体整数组成的集合称为整数集,记Z;全体有理数组成的集合称为有理数集,记Q;全体实数组成的集合称为实数集,记R。拓展与提示:无序性常常作为计算时
3、验证的重要根据。留意N与N*的区分。N*为正整数集,而N为非负整数集,即0N但0 N*。集合的分类 按元素个数按元素的特征可分为:数集,点集,形集等等。特殊地,至少有一个元素的集合叫做非空集合;不含有任何元素的集合叫做空集(),只含有一个元素的集合叫做单元素集。例已知解析 解得x=y=1这与集合中元素的互异性相冲突。解得x= -1或1(舍去)这时y=0x= -1,y=06、集合的表示方法列举法:把集合中的全部元素一一列举出来,并用花括号“”括起来表示集合的方法叫做列举法。适用条件:有限集或有规律的无限集,形式:描绘法:用集合所含元素的共同特征表示集合的方法称为描绘法,详细方法是:在花括号内先写
4、上表示这个集合元素的一般符号及取值(或改变)范围;再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。适用条件:一般合适于无限集,有时也可以是有限集。形式:,其中x为元素,p(x)表示特征。拓展与提示:假如集合中的元素的范围已经很明确,那么xD可以省略,只写其元素x,如可以表示为。(3)韦恩图法:把集合中的元素写在一条封闭曲线(圆、椭圆、矩形等)内。例 用适当的方法表示下列集合,并指出它是有限集还是无限集:由全部非负奇数组成的集合;平面直角坐标系内全部第三象限的点组成的集合;方程x2+x+1=0的实数根组成的集合。解:由全部非负奇数组成的集合可表示为:,无限集。平面直角坐标系内全部第三象
5、限的点组成的集合为:,无限集。方程x2+x+1=0的判别式的0,故无实数,方程x2+x+1=0的实根组成的集合是空集。7、集合的根本关系子集:一般地,对于两个集合A、B,假如集合A中随意一个无素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作,读作“A含于B”(或“B包含A”)。可简述为:若,则集合A是集合B的子集。 集合相等:假如集合A是集合B的子集,且集合B是集合A的子集,此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B。数学表述法可描绘为:对于集合A、B,若,且,则集合A、B相等。真子集:假如集合,但存在元素,且,我们称集合A是集合
6、B的真子集,记作或说:若集合,且AB,则集合A是集合B的真子集。空集:不含任何元素的集合叫做空集,记为,并规定:空集是任何集合的子集,是任何非空集合的真子集。拓展与提示:(1) 。(2) B(其中B为非空集合)(3)对于集合A,B,C,若。(4)对于集合A,B,C,若,C则C(5)对于集合A,B,若。(6)含n元素的集合的全部子集个数为2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个。(7)不同,前者为包含关系,后者为属于关系。8、集合间的根本运算拓展与提示:对于随意集合A、B,有(1)(2);(3);(4)。并集:一般地,由全部属于集合A或集合B的元素组成的集合,称为
7、集合A与B的并集,记作 (读作“A并B”),即拓展与提示:对于随意集合A、B,有(1) (2);(3);(4);(5)。交集:一般地,由属于集合A且属于集合B的全部元素组成的集合,称为集合A与B的交集,记作(读作“A交B”),即。全集与补集全集:一般地,假如一个集合含有我们所讨论问题中所涉及的全部元素,那么就称这个集合为全集,通常记作U。补集:对于一个集合A,由全集U中不属于集合A的全部元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作。例 设集合,若AB=,求AB。解析 由AB=得,9A。x2=9或2x-1=9由x2=9得,x=3。当x=3时,与元素的互异性冲突。当x=-3
8、时,此时,由2x-1=9得x=5.当x=5时,此时,与题设冲突。综上所述,集合中元素的个数:在讨论集合时,常常遇到有关集合元素的个数问题,我们把含有限个元素的集合A叫做有限集,用card来表示有限集合A中元素的个数。例如:.一般地,对随意两个有限集A,B,有card(AB)=card(A)+card(B)-card(AB).当时仅当AB=时,card(AB)=card(A)+card(B).解与集合中元素个数有关的问题时,常用venn图。例 学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人,两次运动会中,这个班共有多少名同
9、学参赛?解:设,那么,Card(AB)=card(A)+card(B)-card(AB) =8+12-3=17答:两次运动会中,这个班共有17名同学参赛二、函数及其表示1、函数的概念: 一般地,我们说:设A,B是非空的数集,假如根据某种确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为集合A到集合B的一个函数,记作其中,x叫做自变量,x的取值范围A叫函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域,明显,值域是集合B的子集。2、函数的三要素函数的三要素是指定义域、对应关系和值域。由于值域是由定义域和对应关系确定
10、的,所以,假如两个函数的定义域一样,并且对应关系完全一样,我们就称这两个函数相等。提示:函数符号y=f(x)是由德国数学家莱布尼兹在18世纪引入的。(2)留意区分f(a)和f(x),f(x)是指函数解析式,f(a)是指自变量为a时的函数值。3、区间:设a,b是两个实数,而且ab,我们规定:满意不等式axb的实数x的集合叫做闭区间,表示为a,b;满意不等式axb的实数x的集合叫做开区间,表示为(a,b);满意不等式axb或axb的实数x的集合叫做半开半闭区间,分别表示为这里的实数a与b都叫做相应区间的端点。定义名称符号数轴表示闭区间a,b开区间(a,b)半开半闭区间半开半闭区间实数集常用区间表示
11、为,“”读作“无穷大”。“”读作“负无穷大”,“+”读作“正无穷大”集合符号数轴表示拓展与提示:(1)在数轴上,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点。(2)求函数定义域,主要通过下列途径实现。若f(x)是整式,则定义域为R;若f(x)为分式,则定义域为使分母不为零的全体实数;若f(x)为偶次根式,则定义域为使被开方数为非负数的全体实数;若f(x)的定义域为a,b,则fg(x)的定义域是ag(x)b的解集;若fg(x)的定义域为a,b,则f(x)的定义域是g(x)在下的值域。例1 求下列函数的定义域解:要使有意义,则必需,即x-1且x2,故所求函数的定义域为例2 已知
12、函数f(x)的定义域是-1,3,求f(x+1)和f(x2)的定义域已知函数f(2x+3)的定义域为,求f(x-1)的定义域解: f(x)的定义域为-1,3,f(x+1)的定义域由-1x+13确定,即-2x2,f(x+1)的定义域为-2,2.f(x2)的定义域由-1x23确定,即f(x2)的定义域为函数f(2x+3)的定义域为,2x+3中的x满意-1x2,12x+37.令t=2x+3,则f(t)的定义域为.又1x-17,2x8f(x-1)的定义域为4、反函数式子y=f(x)表示y是自变量x的函数,设它的定义域为A,值域为C,我们从式子y=f(x)中解出x得到x=g(y),假如对于y在C中的任何一
13、个值通过式子x=g(y),x在A中都有唯一确定的值和它对应,那么式子x=g(y)表示y是自变量x的函数,这样的函数x=g(y)叫做y=f(x)的反函数,记作,一般写成.拓展与提示:(1)函数y=f(x)的定义域和值域分别是它的反函数的值域和定义域;(2)函数y=f(x)的图象和它的反函数的图象关于直线y=x对称。5、函数的三种表示法解析法,就是用数学表达式表示两个变量之间的对应关系。图象法,就是用图象表示两个变量之间的对应关系。列表法,就是列出表格来表示两个变量之间的对应关系。(1)函数用列表法表示时,其定义域是表中自变量所取值的全体,其值域是表中对应函数值的全体。(2)函数用图象法表示时,其
14、定义域是图象投射到x轴上的区域范围,其值域是图象投射到y轴上的区域范围。6、分段函数若函数在定义域的不同子集上对应关系不同,可用几个式子来表示函数,这种形式的函数叫分段函数,它是一类重要函数,形式是:分段函数是一个函数,而不是几个函数,对于分段函数必需分段处理,其定义域为D1D2Dn.拓展与提示:分段函数中,分段函数的定义域的交集为空集。例 中国挪动通信已于2006年3月21日开场在所属18个省、市挪动公司接连推出“全球通”挪动 资费“套餐”,这个套餐的最大特点是针对不同用户采纳了不同的收费方法,详细方案如下:方案代号根本月租(元)免费时间(分钟)超过免费时间话费(元/分钟)130480.60
15、2981700.6031683300.5042686000.45538810000.40请问:“套餐”中第3种收费方式的月话费y与月通话量t(月通话量是指一个月内每次通话用时之和)的函数关系式。解:“套餐”中第3种收费函数为7、复合函数若y是u的函数,u又是x的函数,即y=f(u),u=g(x),x(a,b),u(m,n),那么y关于x的函数y=fg(x),x(a,b)叫做f和g的复合函数,u叫做中间变量,u的取值范围是g(x)的值域。8、映射设A,B是两个非空的集合,假如按某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从
16、集合A到集合B的一个映射。拓展与提示:(1)映射包括集合A、B以及从A到B的对应法则f,三者缺一不行,且A、B必需非空。(2)A中的元素在B中都能找到唯一的元素和它对应,而B中的元素却不肯定在A中找到对应元素,即使有,也不肯定只有一个。9、函数解析式的求法待定系数法。若已知函数类型,可设出所求函数的解析式,然后利用已知条件列方程或方程组,再求系数。换元法。若已知函数的解析式,可令,并由此求出x=g(t),然后代入解析式求得y=f(t)的解析式,要留意t的取值范围为所求函数的定义域。赋值法:可令解析式中的自变量等于某些特殊值求解。列方程(组)法求解。若所给式子中含有f(x),或f(x),f(-x
17、)等形式,可考虑构造另一个方程,通过解方程组获解。 配凑法例 解答下列各题:已知f(x)=x2-4x+3,求f(x+1);已知f(x+1)=x2-2x,求f(x);已知二次函数g(x)满意g(1)=1,g(-1)=5,图象过原点,求g(x)。解:f(x+1)=(x+1)2-4(x+1)+3=x2-2x方法一:(配凑法)f(x+1)=(x+1)2-2x-1-2x=(x+1)2-4x-1=(x+1)2-4(x+1)+3, f(x)=x2-4x+3方法二:(换元法)令x+1=t,则x=t-1,f(t)=(t-1)2-2(t-1)=t2-4t+3,f(x)=x2-4x+3.由题意设g(x)=ax2+b
18、x+c,a0.g(1)=1,g(-1)=4,且图象过原点, 解得 g(x)=3x2-2x.三、函数的根本性质1、函数的单调性一般地,设函数f(x)的定义域为I:假如对于定义域I内某个区间D上的随意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数,如图所示。假如对于定义域I内某个区间D上的随意两个自变量的值x1,x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数,如图所示。假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间。拓展与提示:定义中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 知识点
限制150内