高中数学知识点总结精华版.docx
《高中数学知识点总结精华版.docx》由会员分享,可在线阅读,更多相关《高中数学知识点总结精华版.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修+选修学问点归纳新课标人教A版一、集合1、 把探讨的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、 只要构成两个集合的元素是一样的,就称这两个集合相等。3、 常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描绘法.1.1.2、集合间的根本关系1、 一般地,对于两个集合A、B,假如集合A中随意一个元素都是集合B中的元素,那么称集合A是集合B的子集。记作.2、 假如集合,但存在元素,且,那么称集合A是集合B的真子集.记作:.3、 把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、
2、 假如集合A中含有n个元素,那么集合A有个子集,个真子集.1.1.3、集合间的根本运算1、 一般地,由全部属于集合A或集合B的元素组成的集合,称为集合A及B的并集.记作:.2、 一般地,由属于集合A且属于集合B的全部元素组成的集合,称为A及B的交集.记作:.3、全集、补集?1.2.1、函数的概念1、 设A、B是非空的数集,假如依据某种确定的对应关系,使对于集合A中的随意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、 一个函数的构成要素为:定义域、对应关系、值域.假如两个函数的定义域一样,并且对应关系完全一样,那么称这两个函数相等.1.2.2、函数的
3、表示法1、 函数的三种表示方法:解析法、图象法、列表法.1.3.1、单调性及最大小值1、留意函数单调性的证明方法:(1)定义法:设那么上是增函数;上是减函数.步骤:取值作差变形定号推断格式:解:设且,那么:= (2)导数法:设函数在某个区间内可导,假设,那么为增函数;假设,那么为减函数.1.3.2、奇偶性1、 一般地,假如对于函数的定义域内随意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、 一般地,假如对于函数的定义域内随意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.学问链接:函数及导数1、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,相应的切
4、线方程是.2、几种常见函数的导数; ; ; ; ;3、导数的运算法那么1. 2. 3.4、复合函数求导法那么复合函数的导数和函数的导数间的关系为,即对的导数等于对的导数及对的导数的乘积.解题步骤:分层层层求导作积复原.5、函数的极值 (1)极值定义:极值是在旁边全部的点,都有,那么是函数的极大值; 极值是在旁边全部的点,都有,那么是函数的微小值.(2)判别方法:图象性质(1)定义域:R2值域:0,+3过定点0,1,即0时,14在 R上是增函数4在R上是减函数(5);(5);假如在旁边的左侧0,右侧0,那么是极大值;假如在旁边的左侧0,右侧0,那么是微小值.6、求函数的最值 (1)求在内的极值极
5、大或者微小值(2)将的各极值点及比较,其中最大的一个为最大值,最小的一个为微小值。2.1.1、指数及指数幂的运算1、 一般地,假如,那么叫做 的次方根。其中.2、 当为奇数时,;当为偶数时,.3、 我们规定: ;4、 运算性质: ;.2.1.2、指数函数及其性质1、记住图象:2、性质:2.2.1、对数及对数运算1、指数及对数互化式:;2、对数恒等式:.3、根本性质:,.4、运算性质:当时:;.5、换底公式:.6、重要公式:7、倒数关系:.2.2.2、对数函数及其性质1、记住图象:2、性质:图象性质(1)定义域:0,+2值域:R3过定点1,0,即1时,04在 0,+上是增函数4在0,+上是减函数
6、(5);(5);2.3、幂函数1、几种幂函数的图象:3.1.1、方程的根及函数的零点1、方程有实根 函数的图象及轴有交点 函数有零点.2、 零点存在性定理:假如函数在区间 上的图象是连绵不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根.第一章:空间几何体1、空间几何体的构造常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面及截面之间的部分,这样的多面体叫做棱台。2、空间几何体的三视
7、图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照耀下的投影叫平行投影,平行投影的投影线是平行的。3、空间几何体的外表积及体积圆柱侧面积;圆锥侧面积:圆台侧面积:体积公式:;球的外表积和体积:.第二章:点、直线、平面之间的位置关系1、公理1:假如一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。3、公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补。6、线
8、线位置关系:平行、相交、异面。7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:平行、相交。9、线面平行:断定:平面外一条直线及此平面内的一条直线平行,那么该直线及此平面平行简称线线平行,那么线面平行。性质:一条直线及一个平面平行,那么过这条直线的任一平面及此平面的交线及该直线平行简称线面平行,那么线线平行。10、面面平行:断定:一个平面内的两条相交直线及另一个平面平行,那么这两个平面平行简称线面平行,那么面面平行。性质:假如两个平行平面同时和第三个平面相交,那么它们的交线平行简称面面平行,那么线线平行。11、线面垂直:定义:假如一条直线垂直于一个平面内的随意一
9、条直线,那么就说这条直线和这个平面垂直。断定:一条直线及一个平面内的两条相交直线都垂直,那么该直线及此平面垂直简称线线垂直,那么线面垂直。性质:垂直于同一个平面的两条直线平行。12、面面垂直:定义:两个平面相交,假如它们所成的二面角是直二面角,就说这两个平面互相垂直。断定:一个平面经过另一个平面的一条垂线,那么这两个平面垂直简称线面垂直,那么面面垂直。性质:两个平面互相垂直,那么一个平面内垂直于交线的直线垂直于另一个平面。简称面面垂直,那么线面垂直。直线及方程1、倾斜角及斜率:2、直线方程:点斜式:斜截式:两点式:截距式:一般式:3、对于直线:有:;和相交;和重合;.4、对于直线:有:;和相交
10、;和重合;.5、两点间间隔 公式:6、点到直线间隔 公式:7、两平行线间的间隔 公式:及:平行,那么第四章:圆及方程1、圆的方程:标准方程:其中圆心为,半径为.一般方程:.其中圆心为,半径为.2、直线及圆的位置关系直线及圆的位置关系有三种:;. 弦长公式:3、两圆位置关系:外离:;外切:;相交:;内切:;内含:.3、空间中两点间间隔 公式:统计1、抽样方法:简洁随机抽样总体个数较少系统抽样总体个数较多分层抽样总体中差异明显留意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的时机概率均为。2、总体分布的估计:一表二图:频率分布表数据详实频率分布直方图分布直观频率分布折线图便于视察总体
11、分布趋势注:总体分布的密度曲线及横轴围成的面积为1。茎叶图:茎叶图适用于数据较少的状况,从中便于看出数据的分布,以及中位数、众位数等。个位数为叶,十位数为茎,右侧数据依据从小到大书写,一样的数据重复写。3、总体特征数的估计:平均数:;取值为的频率分别为,那么其平均数为;留意:频率分布表计算平均数要取组中值。方差及标准差:一组样本数据方差:;标准差:注:方差及标准差越小,说明样本数据越稳定。平均数反映数据总体程度;方差及标准差反映数据的稳定程度。线性回来方程变量之间的两类关系:函数关系及相关关系;制作散点图,推断线性相关关系线性回来方程:最小二乘法留意:线性回来直线经过定。第三章:概率1、随机事
12、务及其概率:随机事务A的概率:.2、古典概型:特点:全部的根本事务只有有限个;每个根本事务都是等可能发生。古典概型概率计算公式:一次试验的等可能根本事务共有n个,事务A包含了其中的m个根本事务,那么事务A发生的概率.3、几何概型:几何概型的特点:全部的根本事务是无限个;每个根本事务都是等可能发生。几何概型概率计算公式:;其中测度依据题目确定,一般为线段、角度、面积、体积等。4、互斥事务:不行能同时发生的两个事务称为互斥事务;假如事务随意两个都是互斥事务,那么称事务彼此互斥。假如事务A,B互斥,那么事务发生的概率,等于事务A,B发生的概率的和,即:假如事务彼此互斥,那么有:对立事务:两个互斥事务
13、中必有一个要发生,那么称这两个事务为对立事务。事务的对立事务记作对立事务肯定是互斥事务,互斥事务未必是对立事务。必修4数学学问点第一章:三角函数1.1.1、随意角1、 正角、负角、零角、象限角的概念.2、 及角终边一样的角的集合: .1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .3、弧长公式:.4、扇形面积公式:.1.2.1、随意角的三角函数1、 设是一个随意角,它的终边及单位圆交于点,那么:2、 设点为角终边上随意一点,那么:设 ,3、 ,在四个象限的符号和三角函数线的画法.1.2.2、同角三角函数的根本关系式1、 平方关系:.2、 商数关系:.3、 倒数关
14、系:1.3、三角函数的诱导公式概括为“奇变偶不变,符号看象限1、 诱导公式一:其中:2、 诱导公式二: 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: 1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、可以比照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: 1.4.3、正切函数的图象及性质1、记住正切函数的图象:3、正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,假如存在一个非零常数T,使得当取定义域内的每一个值
15、时,都有,那么函数就叫做周期函数,非零常数T叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质图象定义域值域-1,1-1,1最值无周期性奇偶性奇偶奇单调性在上单调递增在上单调递减在上单调递增在上单调递减在上单调递增对称性对称轴方程:对称中心对称轴方程:对称中心无对称轴对称中心1.5、函数的图象1、对于函数:的周期2、可以讲出函数的图象及的图象之间的平移伸缩变换关系. 先平移后伸缩: 平移个单位 左加右减 横坐标不变 纵坐标变为原来的A倍 纵坐标不变 横坐标变为原来的倍平移个单位 上加下减 先伸缩后平移: 横坐标不变 纵坐标变为原来的A倍 纵坐标不变 横坐标变为原来的倍平移个单位
16、左加右减平移个单位 上加下减3、三角函数的周期,对称轴和对称中心函数,xR及函数,xR(A,为常数,且A0)的周期;函数,(A,为常数,且A0)的周期.对于和来说,对称中心及零点相联络,对称轴及最值点联络.求函数图像的对称轴及对称中心,只需令及解出即可. 4、由图像确定三角函数的解析式利用图像特征:,.要依据周期来求,要用图像的关键点来求.第三章、三角恒等变换3.1.2、两角和及差的正弦、余弦、正切公式1、2、3、4、5、.6、.3.1.3、二倍角的正弦、余弦、正切公式1、, 变形: .2、.变形如下: 升幂公式:降幂公式:3、.4、3.2、简洁的三角恒等变换1、 留意正切化弦、平方降次.2、
17、协助角公式 其中协助角所在象限由点的象限确定, ).第二章:平面对量1、 三角形加法法那么和平行四边形加法法那么.2、 三角形减法法那么和平行四边形减法法那么.向量数乘运算及其几何意义1、 规定:实数及向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规定如下: ,当时, 的方向及的方向一样;当时, 的方向及的方向相反.2、 平面对量共线定理:向量及 共线,当且仅当有唯一一个实数,使.平面对量根本定理:假如是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数,使.2.3.2、平面对量的正交分解及坐标表1、 .2.3.3、平面对量的坐标运算1、 设,那么:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 知识点 总结 精华版
限制150内