第33届全国中学生物理竞赛复赛理论考试试题解答word版.docx
《第33届全国中学生物理竞赛复赛理论考试试题解答word版.docx》由会员分享,可在线阅读,更多相关《第33届全国中学生物理竞赛复赛理论考试试题解答word版.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第33届全国中学生物理竞赛复赛理论考试试题解答一、(20分)如图,上、下两个平凸透光柱面的半径分别为、,且两柱面外切;其剖面(平面)分别平行于各自的轴线,且互相平行;各自过切点的母线互相垂直。取两柱面切点O为直角坐标系O-XYZ的原点,下侧柱面过切点O的母线为X轴,上侧柱面过切点O的母线为Y轴。一束在真空中波长为的可见光沿Z轴负方向傍轴入射,分别从上、下柱面反射回来的光线会发生干预;借助于光学读数显微镜,逆着Z轴方向,可观测到原点旁边上方柱面上的干预条纹在X-Y平面的投影。与远大于傍轴光线干预区域所对应的两柱面间最大间隙。空气折射率为。试推导第k级亮纹在X-Y平面的投影的曲线方程。已知:a.
2、在两种匀称、各向同性的介质的分界面两侧,折射率较大(小)的介质为光密(疏)介质;光线在光密(疏)介质的外表反射时,反射波存在(不存在)半波损失。任何情形下,折射波不存在半波损失。伴随半波损失将产生大小为的相位突变。b. 。参考解答: 如图a所示,光线1在上侧柱面P点处傍轴垂直入射,入射角为,折射角为,由折射定律有其中与分别玻璃与空气的折射率。光线在下侧柱面Q点处反射,入射角与反射角分别为与,由反射定律有光线在下侧柱面Q点的反射线交上侧柱面于点,并由点向上侧柱面折射,折射光线用表示;光线正好与点处的入射光线2的反射光线相遇,发生干预。考虑光波反射时的半波损失,光线与光线在点处光程差为式中为入射光
3、线在真空中的波长,。由题意,与远大于傍轴光线干预区域所对应的两柱面间最大间隙;因此在傍轴垂直入射状况下有式成为亦即在傍轴条件下, 柱面上P、Q两处切平面的法线近似平行,因此从而,在P、Q两处,不仅切平面的法线近似平行,而且在上下外表的反射光线、折射光线均近似平行于入射线,因此也近似平行于Z轴,从而与P点近似重合,即且PQ近似平行于Z轴,因此长度由式得可以将式右端的坐标近似用或坐标表出。为此,引入一个近似公式。如图b所示,设置于平面上的柱面透镜与平面之间的空气隙的厚度为,柱面半径为。对三边边长分别为、与的直角三角形有即在光线傍轴垂直入射时,可略去式左端的,故在光线傍轴垂直入射时, 前面已证近似有
4、PQ/Z轴。故可将上、下两个柱面上的P、Q两点的坐标取为P、Q,如图c所示。依据式可知,P、Q 两点到XOY切平面的间隔 分别为 最终,光线在上、下两个柱面反射并相遇时, 其光程差为若P、Q两点在XOY平面的投影点落在第级亮(暗)纹上,则须满意条件式中亮环条件对应于第k级亮纹上的点的-、-坐标满意的方程。更详细地,不妨假设,依据式中的亮环条件,可得第k级亮纹的方程为它们是椭圆亮环纹,其半长轴与半短轴分别为评分参考:式各1分,式2分,式各1分,式2分,式1分,式2分,式各1分,式2分,式1分,式(亮环条件正确)2分。二、(20分)某秋天早晨,气温为,一加水员到试验园区给一内径为、高为的圆柱形不锈
5、钢蒸馏水罐加水。罐体导热良好。罐外有一内径为的透亮圆柱形视察柱,底部与罐相连(连接处很短),顶部与大气相通,如图所示。加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),并密闭了罐顶的加水口。此时加水员通过视察柱上的刻度看到罐内水高为。(1)从早晨到中午,气温缓慢升至,问此时视察柱内水位为多少?假设中间无人用水,水的蒸发及罐与视察柱体积随温度的变更可忽视。(2)从密闭水罐后至中午,罐内空气对外做的功与汲取的热量分别为多少?求这个过程中罐内空气的热容量。已知罐外气压始终为标准大气压,水在时的密度为,水在温度变更过程中的平均体积膨胀系数为,重力加速度大小为,肯定零度为。参考解答
6、:(1)早晨加完水封闭后,罐内空气的状态方程为式中为罐内空气的摩尔数,、与分别是此时罐内空气的压强、体积与温度。至中午时,由于气温上升,罐内空气压强增大,设此时罐内空气的压强、体积与温度分别为、与,相应的状态方程为式中。空气与水的体积都发生变更,使得视察柱中水位发生变更,此时视察柱内水位与罐内水位之差为,式中右端第三项是由原罐内与视察柱内水的膨胀引起的奉献,为早上加水后观测柱内水面的高度,、分别为罐、视察柱的横截面积。由力平衡条件有式中是水在温度为时的密度。联立式得关于的一元二次方程为式中解方程得另一解不合题意,舍去。由式与题给数据得由上式与题给数据得,中午视察柱内水位为(2)先求罐内空气从早
7、晨至中午对外所做的功。(解法一)早上罐内空气压强;中午视察柱内水位相对于此时罐内水位上升,罐内空气压强上升了由于,可认为在准静态升温过程中,罐内空气平均压强为罐内空气体积缩小了可见,这说明式是合理的。罐内空气对外做功(解法二)缓慢升温是一个准静态过程,在封闭水罐后至中午之间的随意时刻,设罐内空气都处于热平衡状态,设其体积、温度与压强分别为、与。水温为时水的密度为将式中的、与换为、与,利用式得,罐内空气在温度为时的状态方程为由题设数据与前面计算结果可知这说明式右端分子中与有关的项不行略去,而右端分母中与有关的项可略去。于是式可利用状态方程,上式可改写成从封闭水罐后至中午,罐内空气对外界做的功为
8、(解法三)缓慢升温是一个准静态过程,在封闭水罐后至中午的随意时刻,罐内空气都处于热平衡状态,设其体积、温度与压强分别为、与。水在温为时的密度为将式中的、与换为、与,利用式得,罐内空气在温度为时的状态方程为式中应用了式可改写成 从封闭水罐后至中午,罐内空气对外界做的功为现计算罐内空气的内能变更。由能量均分定理知,罐内空气中午相对于早晨的内能变更为式中5是常温下空气分子的自由度。由热力学第肯定律得,罐内空气的吸热为从密闭水罐后至中午,罐内空气在这个过程中的热容量为评分参考:第(1)问10分,式各1分,式2分;第(2)问10分,式各1分,式各2分,式1分。三、(20分)木星是太阳系内质量最大的行星(
9、其质量约为地球的318倍)。假设地球与木星均沿圆轨道绕太阳转动,两条轨道在同一平面内。将太阳、地球与木星都视为质点,忽视太阳系内其它星体的引力;且地球与木星之间的引力在有太阳时可忽视。已知太阳与木星质量分别为与,引力常量为。地球与木星绕太阳运行的轨道半径分别是与。假设在某个时刻,地球与太阳的连线与木星与太阳的连线之间的夹角为。这时若太阳质量突然变为零,求(1)此时地球相对木星的速度大小与地球不被木星引力俘获所须要的最小速率。(2)试探讨此后地球是否会围绕木星转动,可利用(1)中结果与数据、木星公转周期。参考解答:(1)若太阳质量突然变为零,地球与木星围绕太阳转动速度不会突然变更,因此应当等于在
10、太阳质量变为零之前的瞬间,地球与木星围绕太阳转动的速度。设在太阳质量变为零之前,地球与木星绕太阳转动速度分别是与。以太阳为原点、地球与木星公转轨道平面为平面建立坐标系。由万有引力定律与牛顿第二定律有由式得同理有 现计算地球不被木星引力俘获所须要的最小速率(不考虑太阳引力)。若地球相对木星刚好以速度运动,也就是说,当地球在木星的引力场里运动到无限远时,速度刚好为零,此时木星-地球系统引力势能为零,动能也为零,即总机械能为零。按机械能守恒定律,在地球离木星间隔 为时,速度满意即可见,地球不被木星引力俘获所须要的最小速率的大小与木星质量与地球离木星的间隔 有关。 设在太阳质量变为零的瞬间,木星的位矢
11、为地球的位矢为式中为地球此时的位矢与x-轴的夹角。此时地球与木星的间隔 为此时地球相对于木星的速度大小为式中项前面取减号是因为考虑到木星与地球同方向绕太阳旋转的原因。由式得(2)解法(一) 为了推断地球是否会围绕木星转动,只需比拟与的大小。由开普勒第三定律有式中是木星公转周期,而是地球公转周期。由式得与都是正数,所以,由式有:明显,式右端当,即时取最小值,此时太阳、地球、木星共线,且地球与木星在太阳同侧。由式与题给数据有也就是说,在任何状况下,即若太阳质量突然变为零,地球必定不会被木星引力俘获,不会围绕木星旋转。这里考虑的是地球与木星绕太阳运动方向一样的状况。若地球与木星绕太阳转动方向相反,则
12、地球与木星的相对速度会更大,而不变,地球也不会围绕木星旋转。解法(二)为了推断地球是否会围绕木星转动,只需比拟与的大小。首先探讨时的状况,即在太阳质量变为零的瞬间,太阳、地球、木星共线,且地球与木星在太阳同侧的情形。由开普勒第三定律有式中是木星公转周期,而是地球公转周期。由式得将式与有关数据代入式得可见,此时有所以这种情形下地球不会围绕木星旋转。这里考虑的是地球与木星绕太阳运动方向一样的状况。若地球与木星绕太阳转动方向相反,则地球与木星的相对速度会更大,而不变,地球也不会围绕木星旋转。对于的状况,当从0到(或从0到)变更时,从式式可以看到,单调增大,单调减小 所以总有式成立。因此,若太阳质量突
13、然变为零,地球仍不会围绕木星旋转。评分参考:第(1)问10分,式各1分;第(2)问10分,式2分,式1分,式各2分,式各1分,结论正确给1分。四、(20分)蹦极是年轻人宠爱的运动。为探讨蹦极过程,现将一长为、质量为、当仅受到绳本身重力时几乎不行伸长的匀称弹性绳的一端系在桥沿b,绳的另一端系一质量为的小物块(模拟蹦极者);假设比大许多,以致于匀称弹性绳受到绳本身重力与蹦极者的重力向下拉时会显著伸长,但仍在弹性限度内。在蹦极者从静止下落直至蹦极者到达最下端、但未向下拉紧绳之前的下落过程中,不考虑程度运动与可能的能量损失。重力加速度大小为。(1)求蹦极者从静止下落间隔 ( )时的速度与加速度的大小,
14、蹦极者在所考虑的下落过程中的速度与加速度大小的上限。(2)求蹦极者从静止下落间隔 ( )时,绳在其左端悬点b处张力的大小。参考解答:(1)由题意,匀称弹性绳在自重作用下几乎不行伸长,此即其劲度系数特别大。因此,虽然绳的弹力大小不行忽视,但绳在自重作用下的弹性势能却可忽视不计。取桥面为重力势能零点,系统总的初始能量是绳的初始势能,即式中,是绳的质量,是绳的原长。蹦极者下落间隔 时,系统的动能为式中,是蹦极者的质量,是蹦极者的速度大小,它等于下落的绳的速度。下落的那段绳的重力势能为而此时静止的那段绳的重力势能为由式得,此时系统(蹦极者与绳)总的机械能为按题意,不考虑可能的能量损失,有由式得将式两边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 33 全国中学生 物理 竞赛 复赛 理论 考试 试题 解答 word
限制150内