高考立体几何知识点总结.docx
《高考立体几何知识点总结.docx》由会员分享,可在线阅读,更多相关《高考立体几何知识点总结.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高考立体几何学问点总结一 、空间几何体一 空间几何体的类型 1 多面体:由假设干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱及棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。二 几种空间几何体的构造特征 1 、棱柱的构造特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。图1-1 棱柱 1.2 棱柱的分类棱柱底面是四边形四棱柱底面是平行四边形平行六面体侧棱垂直于底面直平
2、行六面体底面是矩形长方体底面是正方形正四棱柱棱长都相等正方体性质:、侧面都是平行四边形,且各侧棱互相平行且相等; 、两底面是全等多边形且互相平行;、平行于底面的截面和底面全等; 棱柱的面积和体积公式是底周长,是高S直棱柱外表 = ch+ 2S底V棱柱 = S底 h2 、棱锥的构造特征 2.1 棱锥的定义 1 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。2正棱锥:假如有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的构造特征 、 平行于底面的截面是及底面相像的正多边形,相像比等于顶点到截面的间隔 及
3、顶点究竟面的间隔 之比;它们面积的比等于截得的棱锥的高及原棱锥的高的平方比;截得的棱锥的体积及原棱锥的体积的比等于截得的棱锥的高及原棱锥的高的立方比;、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; ABCDPOH正棱锥侧面积:为底周长,为斜高体积:为底面积,为高正四面体:对于棱长为正四面体的问题可将它补成一个边长为的正方体问题。对棱间的间隔 为正方体的边长正四面体的高正四面体的体积为正四面体的中心究竟面及顶点的间隔 之比为3 、棱台的构造特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。3.2 正棱台的构造特征 1各侧棱相等,各侧面都是全等的等腰梯
4、形;2正棱台的两个底面和平行于底面的截面都是正多边形; 3正棱台的对角面也是等腰梯形; 4各侧棱的延长线交于一点。4 、圆柱的构造特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。4.2 圆柱的性质1上、下底及平行于底面的截面都是等圆; 2过轴的截面(轴截面)是全等的矩形。4.3 圆柱的侧面绽开图:圆柱的侧面绽开图是以底面周长和母线长为邻边的矩形。4.4 圆柱的面积和体积公式 S圆柱侧面 = 2rh (r为底面半径,h为圆柱的高) S圆柱全 = 2 r h + 2 r2 V圆柱 = S底h = r2h5、圆锥的构造特征5.1 圆锥的定义:以直
5、角三角形的始终角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥。5.2 圆锥的构造特征 1 平行于底面的截面都是圆,截面直径及底面直径之比等于顶点到截面的间隔 及顶点究竟面的间隔 之比;图1-5 圆锥 2轴截面是等腰三角形; 3母线的平方等于底面半径及高的平方和: 5.3 圆锥的侧面绽开图:圆锥的侧面绽开图是以顶点为圆心,以母线长为半径的扇形。6、圆台的构造特征 6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台。 6.2 圆台的构造特征 圆台的上下底面和平行于底面的截面都是圆; 圆台的截面是等腰梯形; 圆台常常补成圆锥,然后利用相像三
6、角形进展探讨。 6.3 圆台的面积和体积公式 S圆台侧 = (R + r)l (r、R为上下底面半径) S圆台全 = r2 + R2 + (R + r)l V圆台 = 1/3 ( r2 + R2 + r R) h (h为圆台的高) 7 球的构造特征 7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体。空间中,及定点间隔 等于定长的点的集合叫做球面,球面所围成的几何体称为球体。 7-2 球的构造特征 球心及截面圆心的连线垂直于截面; 截面半径等于球半径及截面和球心的间隔 的平方差:r2 = R2 d2 7-3 球及其他多面体的组合体的问题 球体及其他多面体组合,包
7、括内接和外切两种类型,解决此类问题的根本思路是: 依据题意,确定是内接还是外切,画出立体图形; 找出多面体及球体连接的地方,找出对球的相宜的切割面,然后做出剖面图; 将立体问题转化为平面几何中圆及多边形的问题; 留意圆及正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长。 7-4 球的面积和体积公式 S球面 = 4 R2 (R为球半径) V球 = 4/3 R3三空间几何体的外表积及体积空间几何体的外表积棱柱、棱锥的外表积:各个面面积之和圆柱的外表积 : 圆锥的外表积:圆台的外表积: 球的外表积:扇形的面积公式其中表示弧长,表示半径,表示弧度空间几何体
8、的体积柱体的体积 : 锥体的体积 : 台体的体积 : 球体的体积: 四空间几何体的三视图和直观图 正视图:光线从几何体的前面对后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面对右边正投影,得到的投影图。画三视图的原那么:正俯长相等、正侧高一样、俯侧宽一样注:球的三视图都是圆;长方体的三视图都是矩形直观图:斜二测画法斜二测画法的步骤:1平行于坐标轴的线依旧平行于坐标轴;2平行于y轴的线长度变半,平行于x,z轴的线长度不变;3画法要写好用斜二测画法画出长方体的步骤:1画轴2画底面3画侧棱4成图二 、点、直线、平面之间的关系一、立体几何网
9、络图:公理4线线平行线面平行面面平行线线垂直线面垂直面面垂直三垂线逆定理三垂线定理1、线线平行的推断: 1、平行于同始终线的两直线平行。3、假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。6、假如两个平行平面同时和第三个平面相交,那么它们的交线平行。 12、垂直于同一平面的两直线平行。2、线线垂直的推断: 7、在平面内的一条直线,假如和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。8、在平面内的一条直线,假如和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。10、假设始终线垂直于一平面,这条直线垂直于平面内全部直线。补充:一条直线和两条平行直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 立体几何 知识点 总结
限制150内